

TN22

Fluorescent tube lamp starter SCR

Features

- High clamping voltage structure (1200 to 1500 V)
- Low gate triggering current for direct drive from line (< 1.5 mA)
- High holding current (> 175 mA), ensuring high striking energy

Description

The TN22 has been specifically developed for use in fluorescent tube lamp electronic starter circuits.

Used in conjunction with a sensitive SCR, it provides high energy striking characteristics with low triggering power.

Thanks to the optimized characteristics of the TN22, starters offer high reliability levels and extended life time of the fluorescent tube lamps.

This is information on a product in full production.

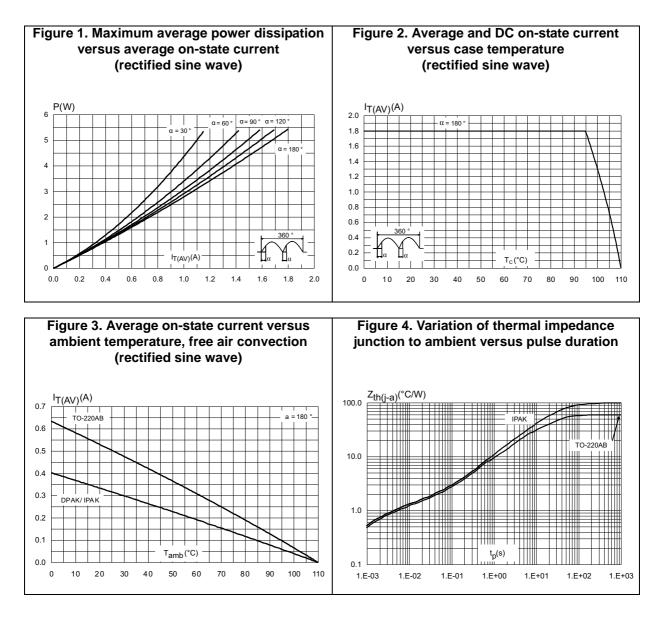
1 Characteristics

Symbol	Parameter	Value	Unit	
V_{DRM}	Repetitive peak off-state voltage $T_j = 110 \text{ °C}$		400	V
I _{T(RMS)}	On-state RMS current full sine wave (180° conduction angle)	T _c = 95 °C	2	A
I _{T(AV)}	Mean on-state current Full sinewave (180° conduction angle)	T _c = 95 °C	1.8	A
I	Non repetitive surge peak on-state current	t _p = 8.3 ms	22	А
TSM	(T _j initial = 25 °C)	t _p = 10 ms	20	~
l ² t	I ² t Value for fusing	2	A ² s	
dl/dt	Critical rate of rise of on-state current $I_G = 5 \text{ mA dI}_G/\text{dt} = 70 \text{ mA/}\mu\text{s}$	50	A/µs	
P _{G(AV)}	Average gate power dissipation		300	mW
P_{GM}	Peak gate power dissipation	t _p = 20 μs	2	W
I _{GM}	Peak gate current	t _p = 20 μs	1	А
V _{RGM}	Maximum peak reverse gate voltage	6	V	
T _{stg} T _j	Storage and operating junction temperature range	-40 to +150 -40 to +110	°C	
ΤL	Maximum lead temperature for soldering during 10 s from case	260	°C	

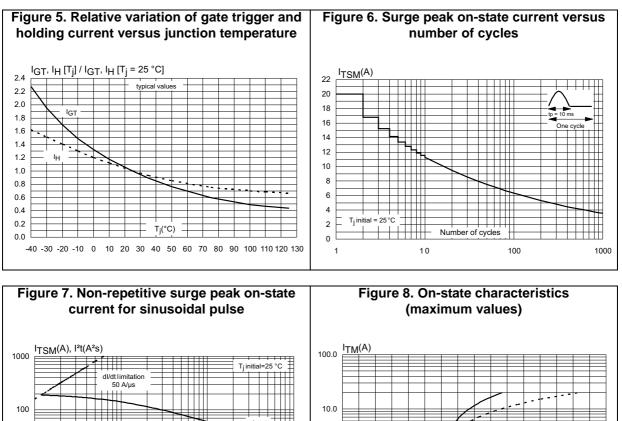
Table 1.	Absolute	ratings	(limitina	values)
	Absolute	ratings	(values

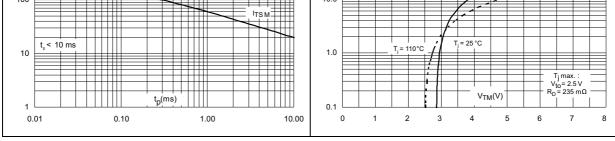
Table 2. Electrical characteristics ($T_j = 25$ °C unless otherwise stated)

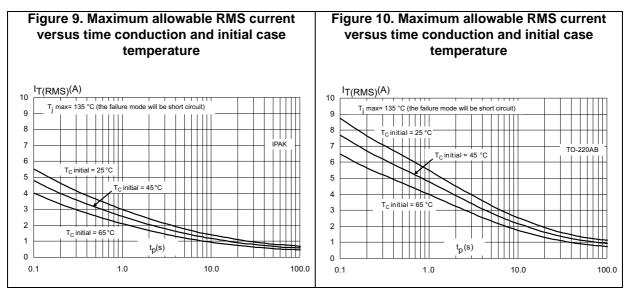
Symbol	Test conditions	Value	Unit	
I _{GT}	V_{D} =12 V (DC), R _L = 33 Ω	Max.	1.5	mA
V _{GT}	V_{D} =12 V (DC), R _L = 33 Ω , R _{GK} = 1 K Ω	Max.	3	V
Ι _Η	V _{GK} = 0 V	Min.	175	mA
dV/dt	Linear slope up to V _D = 67% V _{DRM,} V _{GK} = 0 V, T _j = 110 °C	Min.	500	V/µs
V	I _D = 5 mA, V _{GK} = 0 V	Min.	1200	V
V _{BR}		Max.	1500	v


Symbol	Test conditions	Value	Unit	
V _{TM}	I _{TM} = 2 A t _p = 380 μs	Max.	3.1	V
I _{DRM}	V _{DRM} rated	Max.	0.1	mA

DocID3768 Rev 5




Symbol	Parameter	Value	Unit		
D	Junction to ambient	IPAK	100	°C/W	
R _{th(j-a)}		TO-220AB	60	C/W	
R _{th(j-c)} Junction to case			3	°C/W	


Table 4 Thermal resistance

DocID3768 Rev 5

TN22

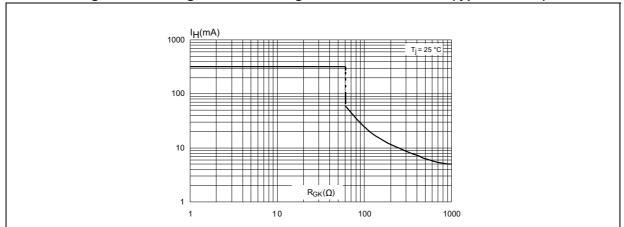


Figure 11. Holding current versus gate-cathode resistance (typical values)

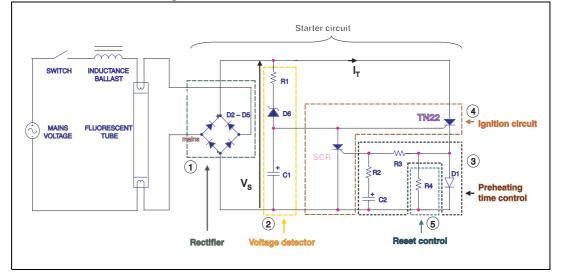
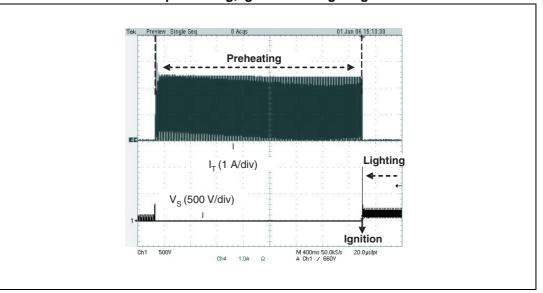
2 Application information

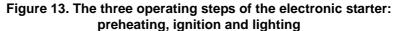
2.1 Overview

The TN22 has been designed for use as a fluorescent tube starter switch.

As shown in *Figure 12*, the starter circuit is divided in five parts:

- 1. Rectifier bridge: to rectify mains voltage.
- 2. Voltage detector: RCD circuit used to switch on the TN22.
- 3. Preheating time control: RC circuit used to switch on the SCR, so turn off the TN22.
- 4. Ignition circuit: made of sensitive SCR and TN22 devices.
- 5. Reset control: resistor used to discharge the C2 capacitor and to reset the circuit.


Figure 12. Electronic starter schematic

Three steps are necessary to ignite a fluorescent tube (see Figure 13):

- preheating of the filament
- ignition of the tube
- "lighting" mode

2.2 Filament and tube preheating

The mains voltage is applied across the circuit and when it reaches a higher level than the zener clamping voltage (V_{CL}), a current flows through the resistor R1 and the capacitor C1. The TN22 switches on when the voltage across its gate to cathode junction reaches the triggering gate level (V_{GT}).

As the TN22 is in on-state, a full sinusoidal current flows through the filaments (primary of the rectifier bridge) that are warmed up. This current is limited by the input ballast. The TN22 remains on at each current zero crossing point because the gate is still powered by the C1 capacitor.

The preheating time duration is set with the RC circuit made of R3, R2 and C2, and according to the voltage polarization fixed by the D1 drop voltage.

The preheating time is typically in the range of 2 to 3 seconds depending on the tube characteristics.

2.3 Ignition step

When C2 is charged above the SCR triggering gate voltage (V_{GT}), the SCR switches on. The voltage across the TN22 gate to cathode junction is fixed to a negative value, which allows a proper TN22 switch-off, with a high holding current (I_H) level.

When the current reaches I_H , the TN22 switches off and the ballast inductor generates a high voltage pulse across the tube (see *Figure 13*). This over-voltage is clamped by the TN22 to a value fixed by the breakdown voltage (V_{BR}). A 1200 V to 1500 V level is necessary to ensure a correct ignition of the fluorescent tubes.

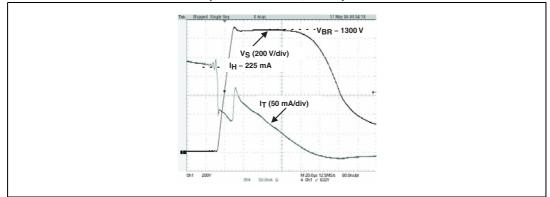


Figure 14. Typical high voltage pulse of an electronic starter circuit (P0130AA SCR, TN22)

If the lamp is not ignited after the first pulse, the starter circuit starts a new ignition sequence. The pulse is regenerated until ignition of the tube lamp. If the lamp is not ignited after several attempts, the starter circuit can automatically stop the ignition sequence.

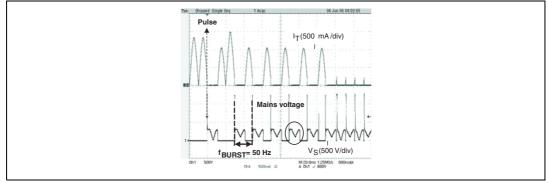


Figure 15. Repetitive ignitions sequence

2.4 Lighting state

When the lamp is ignited, the capacitor C2 is discharged through the resistors R2, R3 and R4. The voltage across the lamp remains lower than the D6 clamping voltage (V_{CL}), avoiding the triggering of the TN22. The starter circuit remains in stand-by mode.

3 Package information

- Epoxy meets UL94, V0
- Lead-free packages
- Recommended torque: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

3.1 IPAK package information

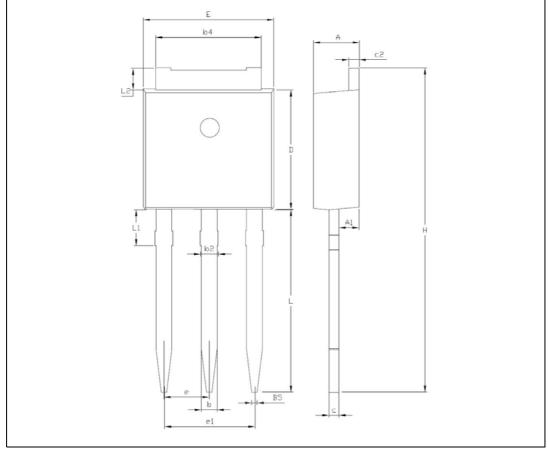


Figure 16. IPAK package outline

Note:

This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.

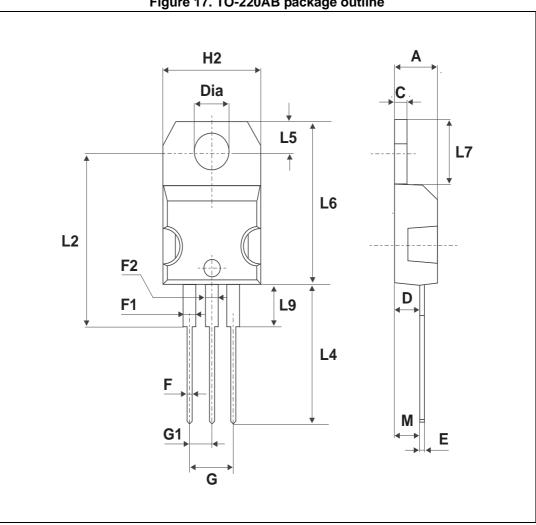


Table 5. IPAK package mechanical data Dimensions						
Ref.	Millimeters			Inches		
-	Min.	Тур.	Max.	Min.	Тур.	Max.
А	2.20		2.40	0.086		0.094
A1	0.90		1.10	0.035		0.043
b	0.64		0.90	0.025		0.035
b2			0.95			0.037
b4	5.20		5.43	0.204		0.213
B5		0.30			0.012	
С	0.45		0.60	0.017		0.023
c2	0.46		0.60	0.018		0.023
D	6		6.20	0.236		0.244
Е	6.40		6.65	0.252		0.2618
е		2.28			0.090	
e1	4.40		4.60	0.173		0.181
Н		16.10			0.634	
L	9		9.60	0.354		0.377
L1	0.8		1.20	0.031		0.047
L2		0.80	1.25		0.031	0.049
V1		10°			10°	

Table 5. IPAK package mechanical data

3.2 TO-220AB package information

DocID3768 Rev 5

	Dimensions					
Ref.	Millimeters		Incl	hes		
	Min.	Max.	Min.	Max.		
А	4.40	4.60	0.17	0.18		
b	0.61	0.88	0.024	0.035		
b1	1.14	1.70	0.045	0.067		
С	0.48	0.70	0.019	0.027		
D	15.25	15.75	0.60	0.62		
D1	1.27	′ typ.	0.05	typ.		
Е	10	10.40	0.39	0.41		
е	2.40	2.70	0.094	0.106		
e1	4.95	5.15	0.19	0.20		
F	1.23	1.32	0.048	0.052		
H1	6.20	6.60	0.24	0.26		
J1	2.40	2.72	0.094	0.107		
L	13	14	0.51	0.55		
L1	3.50	3.93	0.137	0.154		
L20	16.40 typ.		0.64 typ.			
L30	28.90 typ.		1.13	typ.		
ØP	3.75	3.85	0.147	0.151		
Q	2.65	2.95	0.104	0.116		

Table 6. TO-220AB package mechanical data

4 Ordering information

Figure 18. Ordering information scheme

Startlight deviceOn-state RMS current $2 = 2 A$ Triggering gate current (Max.) $2 = 1.5 \text{ mA}$ Breakdown voltage1500 = 1500 VPackageH = IPAKT = TO-220AB	TN 2 2 - 1500 x
Packing Blank = Tube	

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
TN22-1500H	TN22-1500	IPAK	0.4 g	75	Tube
TN22-1500T	TN22-1500	TO-220AB	2.0 g	50	Tube

5 Revision history

Date Revision		Changes
Oct-2000	1	First release.
17-Sep-2005	2	TO-220AB package added.
13-Aug-2009 3		Updated Figure 14. Added Figure 19 and Figure 20.
03-Jun-2014	4	Update IPAK package information and reformatted to current standard.
18-Jan-2016 5		Format updated to current standard. Updated cover page. Updated <i>Figure 7, Figure 16</i> and <i>Figure 18</i> . Updated <i>Table 1</i> and <i>Table 7</i> .

Table 8. Document revision history

