

TP65H050G4BS

650V SuperGaN® FET in TO-263 (source tab)

Description

The TP65H050G4BS 650V, 50 m Ω gallium nitride (GaN) FET is a normally-off device using Transphorm's Gen IV platform. It combines a state-of-the-art high voltage GaN HEMT with a low voltage silicon MOSFET to offer superior reliability and performance.

The Gen IV SuperGaN[®] platform uses advanced epi and patented design technologies to simplify manufacturability while improving efficiency over silicon via lower gate charge, output capacitance, crossover loss, and reverse recovery charge.

Related Literature

- AN0009: Recommended External Circuitry for GaN FETs
- AN0003: Printed Circuit Board Layout and Probing

Ordering Information

Part Number	Package	Package Configuration
TP65H050G4BS	TO-263	Source Tab

TP65H050G4BS

Features

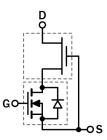
- JEDEC qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- Robust design, defined by
 - Wide gate safety margin
 - Transient over-voltage capability
- Enhanced inrush current capability
- Very low QRR
- Reduced crossover loss

Benefits

- Enables AC-DC bridgeless totem-pole PFC designs
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- Achieves increased efficiency in both hard- and softswitched circuits
- Easy to drive with commonly-used gate drivers
- GSD pin layout improves high speed design

Applications

- Datacom
- Broad industrial
- PV inverter


Servo motor

Key Specifications

V _{DSS} (V)	650
V _{DSS(TR)} (V)	800
$R_{DS(on)eff}(m\Omega)$ max*	60
Q _{RR} (nC) typ	120
Q _G (nC) typ	16

* Dynamic on-resistance; see Figures 18 and 19

Cascode Schematic Symbol

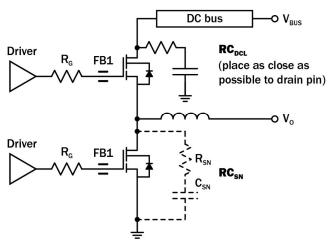
Cascode Device Structure

Absolute Maximum Ratings (Tc=25 °C unless otherwise stated.)

Symbol	Parameter		Limit Value	Unit	
V _{DSS}	Drain to source voltage (TJ = -	55°C to 150°C)	650		
V _{DSS(TR)}	Transient drain to source volt	age ^a	800	V	
V _{GSS}	Gate to source voltage		±20		
P _D	Maximum power dissipation @	Maximum power dissipation @Tc=25°C		W	
I	Continuous drain current @Tc	Continuous drain current @Tc=25°C b		А	
ID	Continuous drain current @Tc	Continuous drain current @Tc=100°C b		А	
I _{DM}	Pulsed drain current (pulse w	Pulsed drain current (pulse width: 10µs)		А	
Tc	Operating temperature	Case		°C	
TJ		Operating temperature Junction		°C	
Ts	Storage temperature	Storage temperature		°C	
T _{SOLD}	Soldering peak temperature °	Soldering peak temperature °		°C	

Notes:

a. In off-state, spike duty cycle D<0.01, spike duration <30µs, non repetitive


b. For increased stability at high current operation, see Circuit Implementation on page 3

c. Reflow MSL3

Thermal Resistance

Symbol	Parameter	Maximum	Unit
R _{ojc}	Junction-to-case	1.05	°C/W
R _{ØJA}	Junction-to-ambient	40	°C/W

Circuit Implementation

Simplified Half-bridge Schematic (See also on Figure 14)

For additional gate driver options/configurations, please see Application Note $\underline{\text{ANOOO9}}$

Layout Recommendations Gate Loop:

- Gate Driver: SiLab Si823x/Si827x
- Keep gate loop compact
- Minimize coupling with power loop

Power loop: (For reference see page 13)

- Minimize power loop path inductance
- Minimize switching node coupling with high and low power plane
- Add DC bus snubber to reduce to voltage ringing
- Add Switching node snubber for high current operation

Recommended gate drive: (OV, 12V) with $R_{G}\text{=}30\Omega$

Gate Ferrite Bead (FB1)	Required DC Link RC Snubber (RC_{DCL}) ^a	Recommended Switching Node RC Snubber (RCsN) ^b	
$200 - 300\Omega$ at 100MHz	[4.7nF + 8Ω] x 2	Not necessary ^b	

Notes:

a. RC_{DCL} should be placed as close as possible to the drain pin

b. $RC_{SN} (200pF + 5\Omega)$ is needed only if R_G is smaller than recommendations

TP65H050G4BS

Electrical Parameters (T_=25°C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward D	evice Characteristics	1			1		
V _{DSS(BL)}	Drain-source voltage	650	_	_	V	V _{GS} =OV	
$V_{GS(th)}$	Gate threshold voltage	3.3	4	4.8	V		
$\Delta V_{GS(th)} / T_J$	Gate threshold voltage temperature coefficient	-	-6.2	-	mV/°C	$V_{DS}=V_{GS}$, $I_D=0.7$ mA	
D	Drain-source on-resistance a	-	50	60	mΩ	V_{GS} =10V, I_{D} =22A	
$R_{DS(on)eff}$		_	105	-	11152	V _{GS} =10V, I _D =22A, T _J =150°C	
I		_	4	40		V _{DS} =650V, V _{GS} =0V	
IDSS	Drain-to-source leakage current	_	15	_	μA	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
		-	-	100		V _{GS} =20V	
IGSS	Gate-to-source forward leakage current	_	-	-100	nA	V _{GS} =-20V	
CISS	Input capacitance	_	1000	_		V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz	
Coss	Output capacitance	_	110	_	pF		
C _{RSS}	Reverse transfer capacitance	_	6	_	-		
C _{O(er)}	Output capacitance, energy related b	-	164	-	_	V_{GS} =0V, V_{DS} =0V to 400V	
C _{O(tr)}	Output capacitance, time related °	-	280	-	рF		
Q _G	Total gate charge	-	16	24		V_{DS} =400V, V_{GS} =0V to 10V, I_D =22A	
Q _{GS}	Gate-source charge	-	6	-	nC		
Q _{GD}	Gate-drain charge	-	5	-	-		
Qoss	Output charge	-	120	_	nC	V _{GS} =0V, V _{DS} =0V to 400V	
t _{D(on)}	Turn-on delay	_	49.2	-		V_{DS} =400V, V_{GS} =0V to 10V, I_D =22A, Rg=45 Ω , Z_{FB} =240 Ω at 100MHz (See Figure 14)	
t _R	Rise time	_	11.3	-			
t _{D(off)}	Turn-off delay	-	88.3	-	ns		
t⊧	Fall time	_	10.9	_	1		

Notes:

a. Dynamic on-resistance; see Figures 17 and 18 for test circuit and conditions

b. Equivalent capacitance to give same stored energy as V_{DS} rises from OV to 400V

c. Equivalent capacitance to give same charging time as V_{DS} rises from OV to 400V

TP65H050G4BS

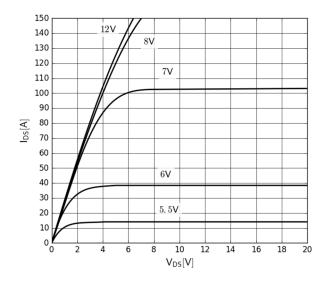
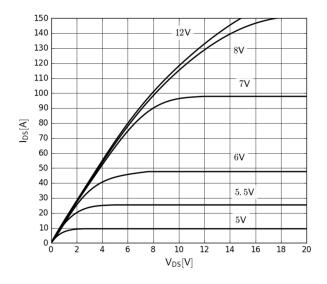
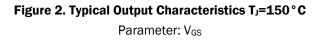
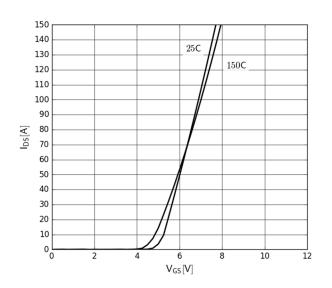
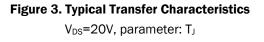
Electrical Parameters (T_=25 °C unless otherwise stated)

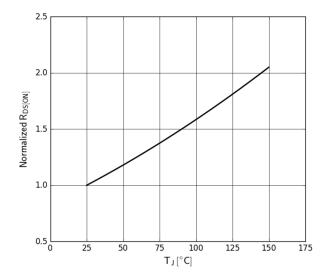
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Reverse Dev	Reverse Device Characteristics						
Is	Reverse current	_	_	22	A	V_{GS} =0V, T _C =100°C, ≤25% duty cycle	
V _{SD}	Boverse veltage a	-	2.2	2.6	- V	V _{GS} =0V, I _S =22A	
VSD	Reverse voltage ^a	_	1.6	1.9		V _{GS} =OV, I _S =11A	
t _{RR}	Reverse recovery time	_	50	_	ns		
Q _{RR}	Reverse recovery charge	_	120	_	nC	- I _S =22A, V _{DD} =400V	
(di/dt) _{RM}	Reverse diode di/dt b	_	_	2500	A/µs	Circuit implementation and parameters on page 3	

Notes:

a. Includes dynamic R_{DS(on)} effect

b. Reverse conduction di/dt will not exceed this max value with recommended R_{G} .


Figure 1. Typical Output Characteristics T_J=25 $^{\circ}\text{C}$ Parameter: V_{GS}

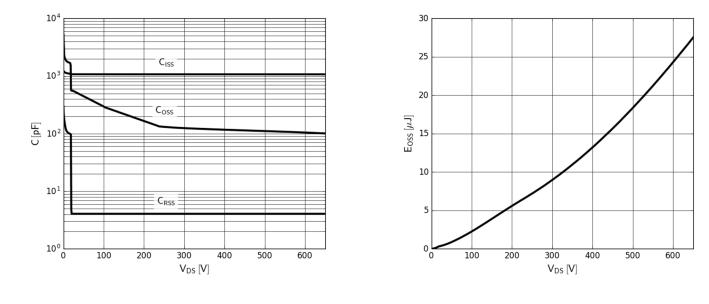


Figure 5. Typical Capacitance

V_{GS}=0V, f=1MHz

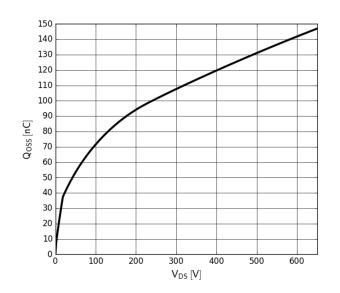
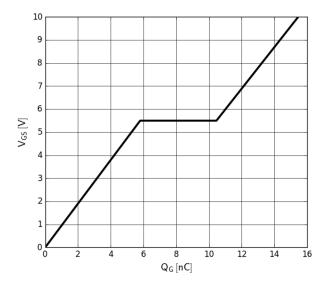



Figure 7. Typical Qoss

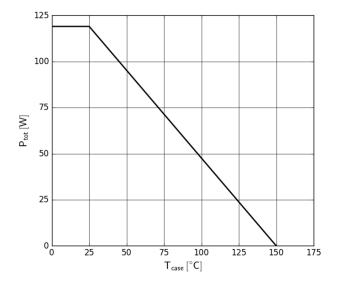


Figure 9. Power Dissipation

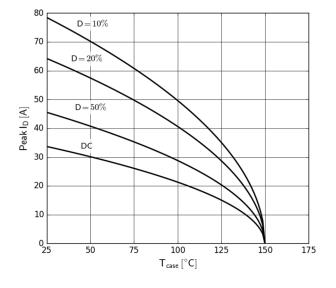
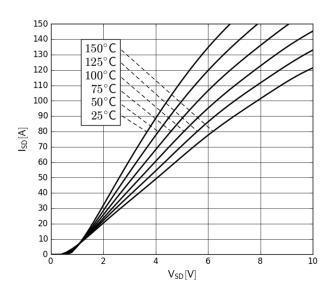
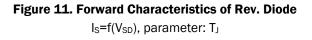




Figure 10. Current Derating Pulse width $\leq 10\mu s$, $V_{GS} \geq 10V$

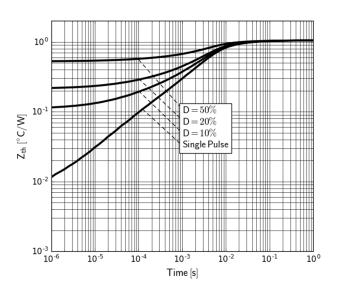


Figure 12. Transient Thermal Resistance

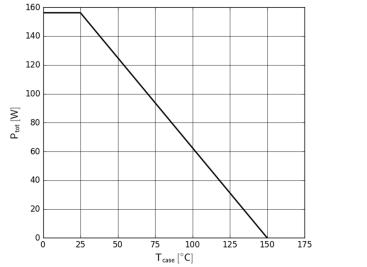


Figure 9. Power Dissipation

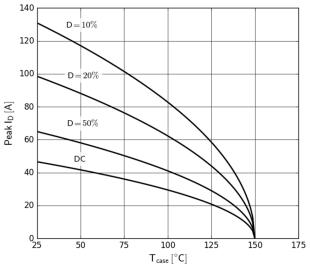
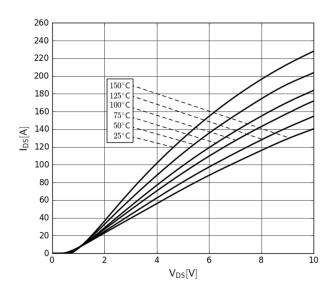
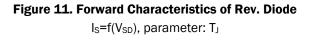




Figure 10. Current Derating Pulse width $\leq 10\mu s$, $V_{GS} \geq 10V$

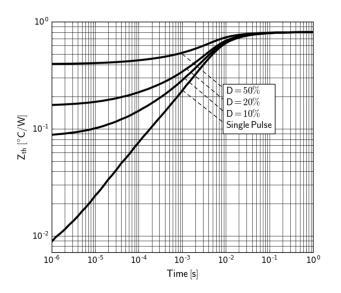


Figure 12. Transient Thermal Resistance

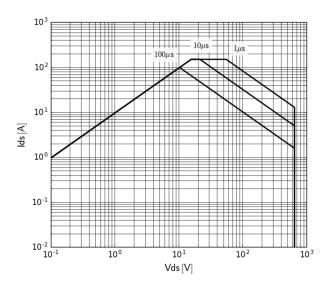
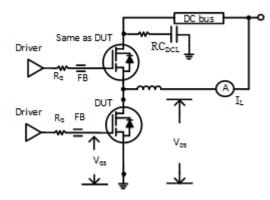



Figure 13. Safe Operating Area Tc=25°C

Test Circuits and Waveforms

Figure 14. Switching Time Test Circuit (see circuit implementation on page 3 for methods to ensure clean switching)

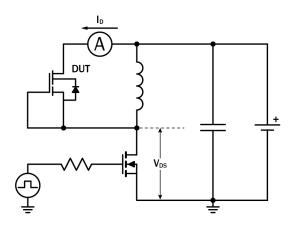


Figure 16. Diode Characteristics Test Circuit

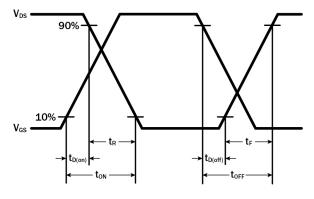


Figure 15. Switching Time Waveform

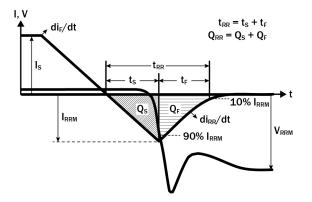
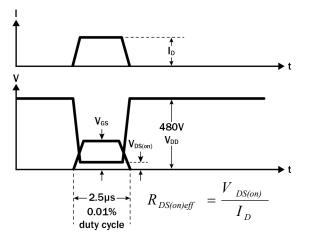



Figure 17. Diode Recovery Waveform

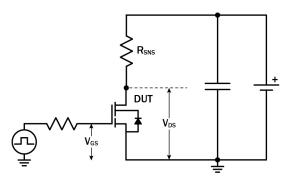


Figure 18. Dynamic R_{DS(on)eff} Test Circuit

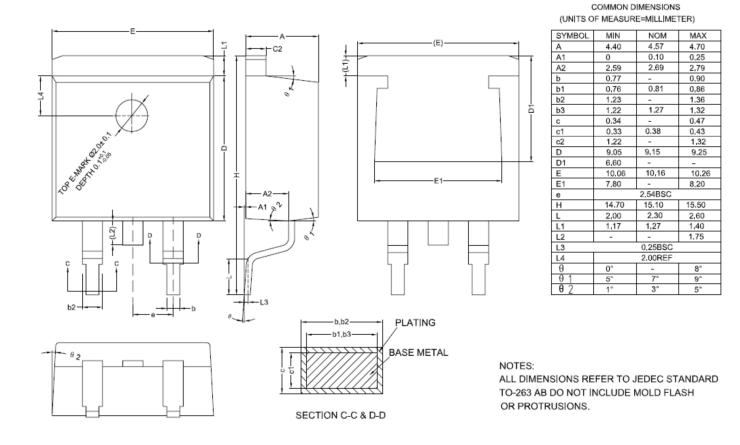
Design Considerations

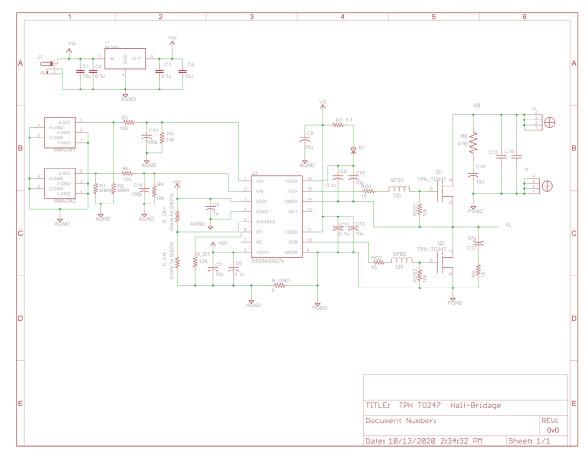
The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power</u> <u>Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See AN0003: Printed Circuit Board Layout and Probing	

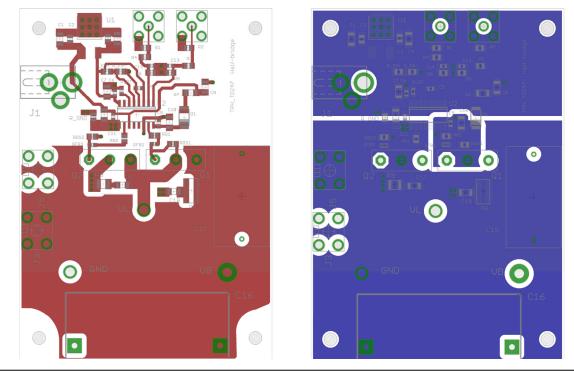

GaN Design Resources


The complete technical library of GaN design tools can be found at transphormusa.com/design:

- Evaluation kits
- Application notes
- Design guides
- Simulation models
- Technical papers and presentations

Mechanical

3 Lead TO-263 Package



Half-bridge Reference Schematic and PCB Layout

Half-bridge layout Sample (Top Layer)

Half-bridge layout Sample (Bottom Layer)

transphorm