TS12001

nanoSmart[®] Battery Management Under-Voltage Load Switch

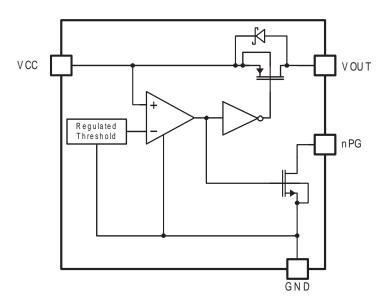
POWER PRODUCTS

Features

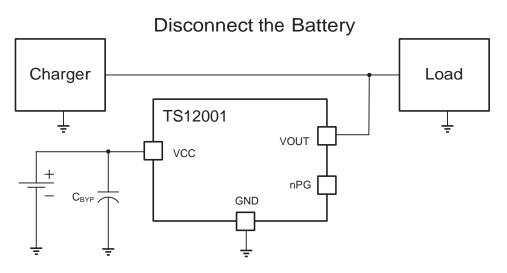
- Off-Active™ feature with ultra-low pico-amp current
- Best-in-class Off-active™ quiescent current of 100pA
- Ultra-low on-active quiescent current of 70nA
- Accurate on to Off-active[™] voltage threshold
- Threshold voltage options of 1.2V 4.2V in 100mV steps (programmed at manufacturing)
- Supervisory over-current limit shutdown
- Low Rds(on): 175mΩ typical @ 5V
- Low drop out disconnect from VBAT to loads
- Turn-on slew rate controlled
- 500mV off to on-active hysteresis

Summary

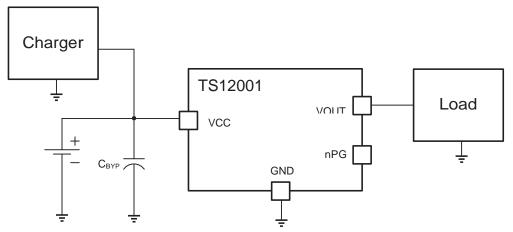
- Wide input voltage range: 1.2V 5.5V
- Packaged in a 8pin DFN (2x2)
- Product is lead-free, Halogen Free, RoHS / WEEE compliant


Description

The TS12001 Off-Active[™] battery management load switch is used to protect a battery from excessive discharge. It consists of an internally generated threshold voltage (VTHRESH), comparator with hysteresis, slew rate control for the load switch, a P-Channel load switch, and an open-drain indicator pin. When the input battery voltage is above VTHRESH, the load switch is on-active. When the input battery voltage falls to VTHRESH, the load switch is Off-Active[™] and the quiescent current draw is approximately 100pA.


Applications

- Portable Battery
- Industrial
- Medical
- SmartCard
- RFID
- Energy Harvesting Systems


Block Diagram

Typical Applications

Note: When the TS12001 is Off-Active[™], the battery will continue to charge through the body diode between VOUT and VCC.

Disconnect the Load

Pin Description

Pin #	Pin Name	Pin Type ⁽¹⁾	Description
1	GND	Р	GND
2	V _{OUT}	0	Output to System Load
3	NC		No Connect (connect to GND or float)
4	NC		No Connect (connect to GND or float)
5	NC		No Connect (connect to GND or float)
6	V _{cc}	I/P	Supply Input
7	V _{cc}	I/P	Supply Input
8	nPG	0	Open-Drain N-Channel Output (low indicates Power Good)

(1) I = Input, O = Output, P = Power

Absolute Maximum Ratings

Over operating free-air temperature range unless otherwise noted^(2, 3, 4)

Parameter	Value	Unit
VCC, VOUT, nPG	-0.3 to 6.0	V
Electrostatic Discharge – Human Body Model	2	kV
Operating Junction Temperature Range, T _J	-40 to 85	°C
Storage Temperature Range, T _{stg}	-65 to 150	°C
Lead Temperature (soldering, 10 seconds)	260	°C

(2) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(3) All voltage values are with respect to network ground terminal.

(4) ESD testing is performed according to the respective JESD22 JEDEC standard.

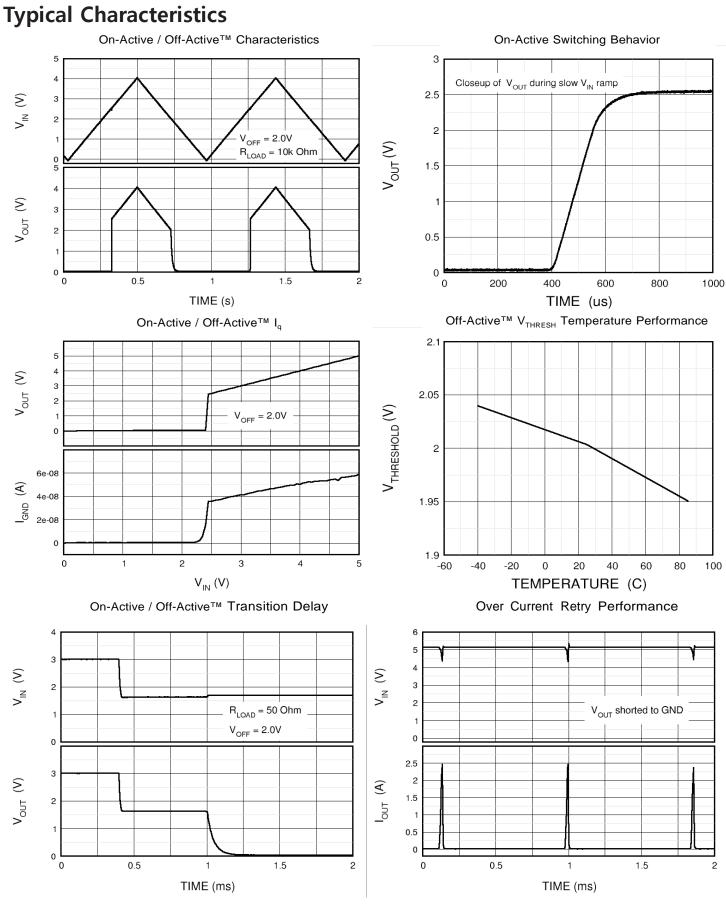
Thermal Characteristics

	θJA (°C/W)	θJC (°C/W)
Package DFN	(See Note 5)	(See Note 6)
8 pin	73.1	10.7

(5) This assumes a FR4 board only.

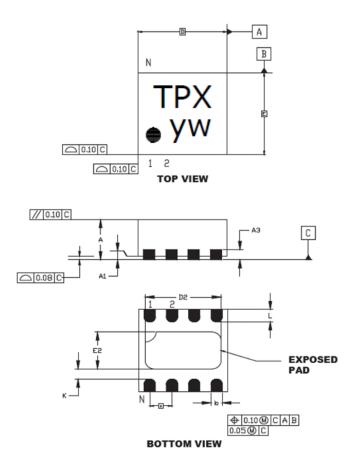
(6) This assumes a 1 Oz. Copper JEDEC standard board with thermal vias – See Exposed Pad section and application note for more information.

Recommended Operating Conditions


Parameter	Min	Тур	Max	Unit
Unregulated Supply Input Voltage (V_{cc})	1.2		5.5	V
Operating Ambient Temperature, T _A (Note 7)	-40		55	°C
Operating Junction Temperature, T _J	-40		85	°C
Input Bypass Capacitor (C _{BYP})		100		nF

(7) TA Max shown here is a guideline. Higher T_A can be tolerated if T_J does not exceed the Absolute Maximum Rating.

Characteristics

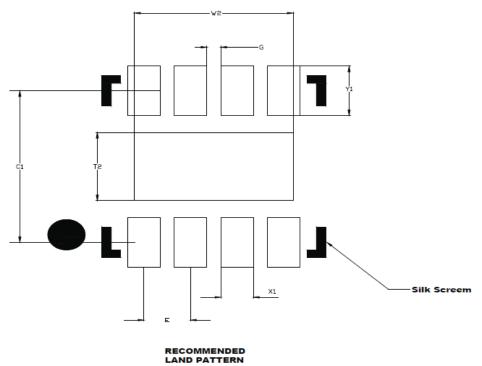

Electrical characteristics, $V_{\rm cc}$ = 1.2V to 5.5V, TJ = 25C, unless otherwise noted

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Input Supply						
V _{cc}	Input Supply Voltage		1.2		5.5	V
I _{q-ON}	Quiescent current: on-active Mode	V _{cc} = 5V, No Load		70	150	nA
I _{q-OFF}	Quiescent current: Off-Active™ Mode	$V_{cc} < V_{THRESH}$, No Load		100		pА
Load Switch						
I _{oc}	Over Current Shutdown	$V_{cc} = 5.0 V$		3		А
T _{oc}	Over Current Retry Period	$V_{cc} = 5.0V$		1.7		ms
I _{LEAK-SW}	Output Switch Leakage Current	V _{cc} < V _{thresh} ; V _{out} Grounded		100		pА
		$V_{cc} = 5.0V$		175		mΩ
Rds-on	Switch On Resistance	$V_{cc} = 3.3V$		200		mΩ
		V _{cc} = 1.8V		350		mΩ
Transition Tir	nes					
t _{d1}	Transition delay: on-active to Off-Active™	$V_{\text{OFF}} = 2.0V, V_{\text{CC}} = 3.0V \rightarrow 1.5V$		650		μs
t _{d2}	Transition delay: Off-Active™ to on-active	$V_{\text{OFF}} = 2.0V, V_{\text{CC}} = 1.5V \rightarrow 3.0V$		1.7		ms
t _{on}	Output turn-on rise time	$V_{_{CC}}=2.5V,R_{_{LOAD}}=50\Omega$		200		μs
nPG Output						
LEAK-nPG	Output Leakage	$V_{cc} = 5.0V, V_{nPG} = 5.5V$			100	nA
V _{OL-nPG}	Low-Level Output Voltage	$I_{nPG} = 5 \text{ mA}$			0.4	V
Off-Active Th	resholds					
V _{off}	Off-Active™ Threshold	$V_{\text{THRESH}} = 1.2V \text{ to } 3.3V$	0.95* V _{THRESH}	V _{THRESH}	1.05* V _{THRESH}	V
V _{Hys}	Off-Active™ to on-active Hysteresis	Rising Transition: Off-Active™ to on-active		500		mV

TS12001 Final Datasheet April 11, 2018

Package Mechanical Drawings (all dimensions in mm)

Refer to the Ordering Information table on page 10 for device marking codes

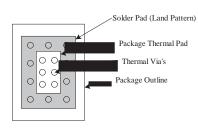

	Units		MILLIMETERS	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е		0.50 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Length	D	2.00 BSC		
Exposed Pad Width	E2	0.75	0.90	1.00
Overall Width	E	2.00 BSC		
Exposed Pad Length	D2	1.55	1.70	1.80
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.20	0.30	0.40
Contact-to-Exposed Pad	K	0.20	-	-

Dimensions and tolerances per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact values shown without tolerances.

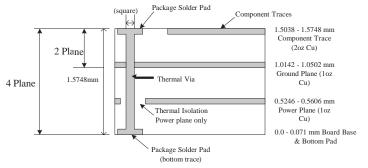
REF: Reference Dimension, usually without tolerance, for information only.

Recommended PCB Land Pattern

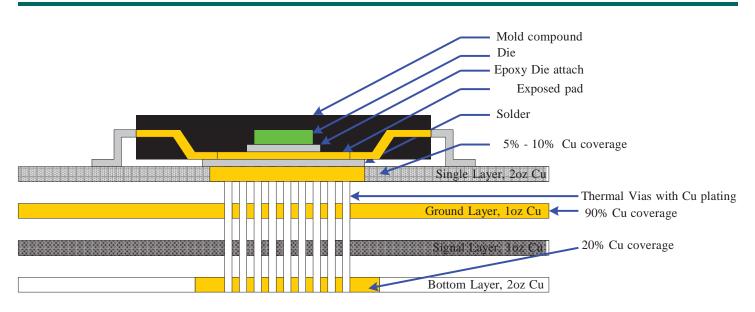

DIMENSIONS IN MILLIMETERS

	Units		MILLIMETERS	
	Dimension Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	W2	-	-	1.70
Optional Center Pad Length	T2	-	-	0.90
Contact Pad Spacing	C1	-	2.00	-
Contact Pad Spacing	C2	-	-	-
Contact Pad Width (X8)	X1	-	-	0.35
Contact Pad Length (X8)	Y1	-	-	0.65
Distance Between Pads	G	0.15	-	-

Application Using a Multi-Layer PCB

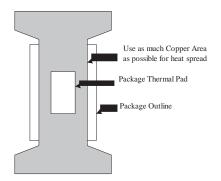

To maximize the efficiency of this package for application on a single layer or multi-layer PCB, certain guidelines must be followed when laying out this part on the PCB.

The following are guidelines for mounting the exposed pad IC on a Multi-Layer PCB with a ground plane.


Package and PCB Land Configuration For a Multi-Layer PCB

JEDEC standard FR4 PCB Cross-section:

Multi-Layer Board (Cross-sectional View)


In a multi-layer board application, the thermal vias are the primary method of heat transfer from the package thermal pad to the internal ground plane. The efficiency of this method depends on several factors, including die area, number of thermal vias, thickness of copper, etc.

Note: NOT to Scale

The above drawing is a representation of how the heat can be conducted away from the die using an exposed pad package. Each application will have different requirements and limitations and therefore the user should use sufficient copper to dissipate the power in the system. The output current rating for the linear regulators may have to be de-rated for ambient temperatures above 85C. The de-rate value will depend on calculated worst case power dissipation and the thermal management implementation in the application.

Application Using a Single Layer PCB

Layout recommendations for a Single Layer PCB: utilize as much Copper Area for Power Management. In a single layer board application the thermal pad is attached to a heat spreader (copper areas) by using low thermal impedance attachment method (solder paste or thermal conductive epoxy).

In both of the methods mentioned above it is advisable to use as much copper traces as possible to dissipate the heat.

IMPORTANT:

If the attachment method is NOT implemented correctly, the functionality of the product is not guaranteed. Power dissipation capability will be adversely affected if the device is incorrectly mounted onto the circuit board.

Ordering Information

TS12001-CvvvDFNR

Part Number	Description	Marking Code
VVV	Threshold Voltage (V _{THRESH})*	TPX
017	1.7 V	T05
021	2.1 V	T09
023	2.3 V	T0B
024	2.4 V	TOC
025	2.5 V	TOD
026	2.6 V	TOE
028	2.8 V	T0F
030	3.0 V	T0G

* Custom values also available (1.2V - 4.2V typical in 100mV increments)

RoHS and Reach Compliance

Semtech is fully committed to environmental quality. All Semtech materials and suppliers are fully compliant with RoHS (European Union Directive 2011/65/EU), REACH SVHC Chemical Restrictions (EC 1907/2006), IPC-1752 Level 3 materials declarations, and their subsequent amendments. Semtech maintains certified laboratory reports for all product materials, from all suppliers, which show full compliance to restrictions on the following:

- Cadmium (Cd)
- Chlorofluorocarbons (CFCs)
- Chlorinate Hydrocarbons (CHCs)
- Halons (Halogen free)
- Hexavalent Chromium (CrVI)
- Hydrobromofluorocarbons (HBFCs)
- Hydrochlorofluorocarbons (HCFCs)
- Lead (Pb)
- Mercury (Hg) Perfluorocarbons
- (PFCs) Polybrominated
- biphenyls (PBB)
- Polybrominated Diphenyl Ethers (PBDEs)