Wideband, Microwave, Shutdown

Monolithic Amplifier

TSS-44+

 50Ω 22 to 43.5 GHz

The Big Deal

- 22 to 43.5 GHz for 5G Applications
- Excellent Gain flatness, ±0.9 dB typ. over 22-40 GHz
- Shutdown feature

CASE STYLE: DQ1225

Product Overview

The TSS-44+ is a surface mount, MMIC amplifier with shutdown feature fabricated using E-PHEMT technology and is a fully integrated 3-stage gain block up to 43.5 GHz with excellent active directivity. It is packaged in industry standard 3x3 mm MCLP package, which provides excellent RF and thermal performance. The TSS-44+ integrates the entire matching network with the majority of the bias circuit inside the package, reducing the need for complicated external circuits. This approach makes the TSS-44+ extremely flexible and enables simple, straightforward use.

Key Features

Feature	Advantages			
Wideband, 22 to 43.5 GHz	The broad frequency range supports a wide array of requirements including telecommunications applications such as 5G and microwave radio backhaul, broadband commercial test and measurement systems, radar and commercial satellite applications			
Excellent Gain Flatness	Typical ± 0.9 dB gain flatness across the entire frequency range minimizes the need for external equalizer networks making it a great fit for instrumentation and other broadband applications			
High Directivity	With active directivity of 28 dB, the TSS-44+ is an excellent choice for buffering broadband circuits. eliminating the need for an expensive isolator in most cases.			
Shutdown feature	Allow users to turn on and off the amplifier with pulsed signals while keeping the power supply at constant voltage.			
Small size	3x3 mm, 12-lead MCLP package			
Integrated DC Blocks & Bias-Tee	Saves motherboard space and minimizes overall cost. Very user friendly.			

Wideband, Microwave, Shutdown

Monolithic Amplifier

22 - 43.5 GHz

Product Features

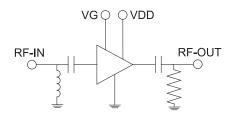
- Super high frequency and wideband, 22 to 43.5 GHz
- Gain, 17.6 dB typ. & Flatness, ±0.9 dB to 40 GHz
- Excellent active directivity, 28 dB typ.
- Positive Supply Voltage, 4V, 22mA
- Integrated DC blocks, Bias-Tee & Microwave bypass capacitor
- Unconditionally Stable
- Aqueous washable; 3mm x 3mm SMT package

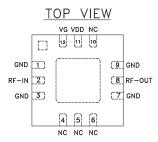
TSS-44+

CASE STYLE: DQ1225

+RoHS Compliant

The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications


Typical Applications


- 5G
- Radio Navigation
- Mobile
- Fixed satellite
- Space research

General Description

The TSS-44+ is a surface mount, MMIC amplifier with shutdown feature fabricated using E-PHEMT technology and is a fully integrated 3-stage gain block up to 43.5 GHz with excellent active directivity. It is packaged in industry standard 3x3 mm MCLP package, which provides excellent RF and thermal performance. The TSS-44+ integrates the entire matching network with the majority of the bias circuit inside the package, reducing the need for complicated external circuits. This approach makes the TSS-44+ extremely flexible and enables simple, straightforward use.

simplified schematic and pad description

Function	Pad Number	Description (See Application Circuit, Fig. 1)		
RF-IN	2	RF input pad		
RF-OUT	8	RF output pad		
V_{DD}	11	DC power supply (V _{DD})		
GND	1,3.7,9	Connected to ground.		
V _G	12	Control voltage for shutdown(VG)		
NC	4,5,6,10	No internal connection. Recommended usage per PCB layer PL-616		

Electrical Specifications⁽¹⁾ at 25°C, Zo=50Ω, and V_{DD}=4V unless otherwise noted.

Davamatav	Condition (CII-)	Amplifier-ON			Amplifier-OFF	Heite	
Parameter	Condition (GHz)	Min.	Тур.	Max.	Тур.	Units	
Frequency Range		22		43.5	22-43.5	GHz	
. , , ,	22		3.7		_		
	25		3.3		_		
Naiss Figure	30		3.2		_	-ID	
Noise Figure	35		3.3		_	dB	
	40		3.5		_		
	43.5		4.2		_		
	22	13.5	15.8	18.6	-41	1	
	25	14.3	16.8	19.7	-33		
Gain	30	14.8	17.6	20.4	-29	dB	
dalii	35	_	17.7	_	-30	l ab	
	40	_	15.7	_	-27		
	43.5	_	10.0		-24		
Gain Flatness	22-40		0.9		_	dB	
Directivity	22-43.5		28		_	dB	
	22		10		3		
	25		17		6		
Input Return Loss	30		16		5	dB	
•	35		12		3		
	40		9		5		
	43.5		8		5		
	22		13		9		
	25		14		8		
Output Return Loss	30		18		9	dB	
	35		9		7		
	40		7		4		
	43.5 22		9 1.2		9 —		
	25		1.8		_		
	30		4.1		_		
Output Power @1dB compression AMP-ON	35		6.4		_	dBm	
	40		7.8		_		
	43.5		7.8 8.2		_		
	43.5		10.1		<u> </u>		
	25		10.1		_		
Output IP3	30		12.7		_		
(Pout=-10dBm/tone)	35		16.7		_	dBm	
	40		15.5		_		
	43.5		15.9		_		
Device Operating Voltage (VDD)	70.0	3.8	4.0	4.2	4.0	V	
Device Operating Voltage (VDD) Device Operating Current (Id)			22	36	3	mA	
Control Voltage (V _G)		3.8	4.0	4.2	0	V	
Control Voltage (I _G)		0.0	8	1.5	2	mA	
DC Current (Id) Variation Vs. Temperature ²			-15		_	µA/°C	
DC Current (Id) Variation Vs. Voltage			0.006		_	mA/mV	
Thermal Resistance			51.9		_	°C/W	

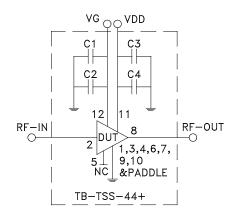
¹ Measured on Mini-Circuits Characterization test board TB-TSS-44+. See Characterization Test Circuit (Fig. 1) ² (Current at 85°C - Current at -45°C)/130

Absolute Maximum Ratings³

Parameter	Ratings				
Operating Temperature (ground lead)	-40°C to 85°C				
Storage Temperature	-55°C to 100°C				
Total Power Dissipation	0.94W				
Input Power	19dBm (5 min. max), 8dBm (continuous)				
DC Voltage V _{DD} ⁴ (Pad 11)	6V				
DC Voltage V _G ⁵ (Pad 12)	5V				

³ Permanent damage may occur if these limits are exceeded.

Control Voltage (V_G) Fig. 1


	Min.	Тур.	Max.	Units
Amplifier-ON	3.8	4	4.2	V
Amplifier-OFF	_	0	0.2	٧

Measured by keeping V_{DD}=4V.
 Measured by keeping V_{DD}=4V.

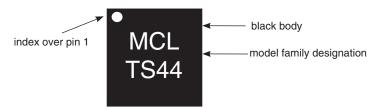
Switching Specifications (Rise/Fall Time)

Parameter			Тур.	Max.	Units
Ammilifian ON to Chutdour	OFF TIME (50% Control to 10% RF)		9.8	_	
Amplifier ON to Shutdown	FALL TIME (90 to 10% RF)	— 9.2 — μs		μs	
Amplifiar Chutdown to ON	ON TIME (50% Control to 90% RF)	_	11.2	_	
Amplifier Shutdown to ON	RISE TIME (10% to 90% RF)		10.7	_	μS
Control Voltage Leakage			2.0	_	mV

Characterization Test Circuit / Recommended Application Circuit

Component	Size	Value	Part Number	Manufacturer
C1,C3	0402	0.1uF	GRM155R71C104KA88D	Murata
C2,C4	0402	100pF	GRM1555C1H101JA01J	Murata

Fig 1. Block diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-TSS-44+) Gain, Return loss, Output power at 1dB compression (P1dB), output IP3 (OIP3) and noise figure measured using Agilent's N5244A PNA-X microwave network analyzer.


Conditions:

- 1. Gain and Return loss: Pin= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -10dBm/tone at output.
- 3. Switching Time:

RF Signal:Pin=-25dBm, f_{RF}=22GHz

V_{DD}=4VDC, VG=Pulse Signal at 1kHz with Vhigh=4V, Vlow=0V& 50% duty cycle

Product Marking

Marking may contain other features or characters for internal lot control

