

$750V-23m\Omega$ SiC FET

Rev. B, July 2021

DATASHEET

UJ4C075023K3S

Part NumberPackageMarkingUJ4C075023K3STO-247-3LUJ4C075023K3S

Description

The UJ4C075023K3S is a 750V, $23m\Omega$ G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-3L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance R_{DS(on)}: 23mΩ (typ)
- Operating temperature: 175°C (max)
- Excellent reverse recovery: Q_{rr} = 84nC
- Low body diode V_{FSD}: 1.23V
- Low gate charge: Q_G = 37.8nC
- Threshold voltage V_{G(th)}: 4.8V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected: HBM class 2 and CDM class C3

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V _{DS}		750	V
Coto course veltage	V	DC	-20 to +20	V
Gate-source voltage	V _{GS}	AC (f > 1Hz)	-25 to +25	V
Continuous drain current ¹	1	T _C = 25°C	66	А
Continuous drain current	I _D	T _C = 100°C	49	А
Pulsed drain current ²	I _{DM}	T _C = 25°C	196	А
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =3A	67	mJ
SiC FET dv/dt ruggedness	dv/dt	$V_{DS} \le 500V$	150	V/ns
Power dissipation	P _{tot}	T _C = 25°C	306	W
Maximum junction temperature	T _{J,max}		175	°C
Operating and storage temperature	T _J , T _{STG}		-55 to 175	°C
Max. lead temperature for soldering, 1/8" from case for 5 seconds	TL		250	°C

1. Limited by $T_{J,max}$

2. Pulse width t_p limited by $T_{J,max}$

3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol	ol Test Conditions	Value			Units
	Symbol		Min	Тур	Max	Onits
Thermal resistance, junction-to-case	$R_{\theta JC}$			0.38	0.49	°C/W

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions	Value			
			Min	Тур	Max	- Units
Drain-source breakdown voltage	BV _{DS}	V _{GS} =0V, I _D =1mA	750			V
Total drain leakage current		V _{DS} =750V, V _{GS} =0V, T _J =25°C		2	30	- μΑ
	I _{DSS}	V _{DS} =750V, V _{GS} =0V, T _J =175°C		15		
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C, V _{GS} =-20V / +20V		6	±20	μA
Drain-source on-resistance		V _{GS} =12V, I _D =40A, T _J =25°C		23	29	
	R _{DS(on)}	V _{GS} =12V, I _D =40A, T _J =125°C		39		mΩ
		V _{GS} =12V, I _D =40A, T _J =175°C		50		l
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =10mA	4	4.8	6	V
Gate resistance	R _G	f=1MHz, open drain		4.5		Ω

Typical Performance - Reverse Diode

Parameter	Symbol	Test Conditions		Units		
			Min	Тур	Max	Units
Diode continuous forward current ¹	ا _s	T _C = 25°C			66	А
Diode pulse current ²	I _{S,pulse}	T _C = 25°C			196	А
Forward voltage	V _{FSD}	V _{GS} =0V, I _S =20A, T _J =25°C		1.23	1.39	V
		V _{GS} =0V, I _S =20A, T _J =175°C		1.45		
Reverse recovery charge	Q _{rr}	V_R =400V, I _S =40A, V_{GS} =0V, R _{G_EXT} =5 Ω		84		nC
Reverse recovery time	t _{rr}	di/dt=1500A/μs, Τ _J =25°C		27		ns
Reverse recovery charge	Q _{rr}	V_R =400V, I _S =40A, V_{GS} =0V, R _{G_EXT} =5 Ω		91		nC
Reverse recovery time	t _{rr}	di/dt=1500A/µs, Tj=150°C		28		ns

Typical Performance - Dynamic

Parameter	Symbol	Test Conditions	Value			Linite
			Min	Тур	Max	Units
Input capacitance	C _{iss}	- V _{DS} =400V, V _{GS} =0V -		1400		
Output capacitance	C _{oss}	f=100kHz		93		pF
Reverse transfer capacitance	C _{rss}			2.5		
Effective output capacitance, energy related	C _{oss(er)}	V _{DS} =0V to 400V, V _{GS} =0V		116		pF
Effective output capacitance, time related	C _{oss(tr)}	V _{DS} =0V to 400V, V _{GS} =0V		232		pF
C _{OSS} stored energy	E _{oss}	V_{DS} =400V, V_{GS} =0V		9.3		μJ
Total gate charge	Q _G	– V _{DS} =400V, I _D =40A, –		37.8		
Gate-drain charge	Q_{GD}	$V_{\rm DS} = 400 \text{ V}, \text{ I}_{\rm D} = 40 \text{ A}, \text{ I}_{\rm CS} = 0 \text{ V to } 15 \text{ V}$		8		nC
Gate-source charge	Q _{GS}	$- v_{GS} = 0 v_{10} 15 v_{-}$		11.8		
Turn-on delay time	t _{d(on)}			10		
Rise time	t _r	Notes 4 and 5, V _{DS} =400V, I _D =40A, Gate		49		nc
Turn-off delay time	t _{d(off)}	Driver =0V to +15V,		53		ns
Fall time	t _f	Turn-on $R_{G,EXT}=1\Omega$,		14		
Turn-on energy including R_S energy	E _{ON}	Turn-off $R_{G,EXT}=5\Omega$, inductive Load, FWD:		455		
Turn-off energy including R_S energy	E _{OFF}	same device with $V_{GS} = 0V$		140		
Total switching energy	E _{TOTAL}	and $R_G = 5\Omega$, RC snubber: $R_S = 10\Omega$ and $C_S = 200 pF$,		595		μJ
Snubber R_s energy during turn-on	E _{RS_ON}	$T_{J}=25^{\circ}C$		4		
Snubber R_S energy during turn-off	E_{RS_OFF}			10		
Turn-on delay time	t _{d(on)}			15		
Rise time	t _r	Notes 4 and 5, V _{DS} =400V, I _D =40A, Gate		47		nc
Turn-off delay time	$t_{d(off)}$	Driver =0V to +15V,		51		ns
Fall time	t _f	Turn-on $R_{G,EXT} = 1\Omega$,		14		
Turn-on energy including R_S energy	E _{ON}	Turn-off $R_{G,EXT}=5\Omega$, inductive Load, FWD: same		505		
Turn-off energy including R_s energy	E _{OFF}	device with $V_{GS} = 0V$ and		157		
Total switching energy	E _{TOTAL}	$R_{G} = 5\Omega$, RC snubber:		662		μJ
Snubber R_s energy during turn-on	E _{RS_ON}	$- R_{s}=10\Omega \text{ and } C_{s}=200\text{pF}, - T_{J}=150^{\circ}\text{C}$		4		
Snubber R_s energy during turn-off	E _{RS_OFF}			10		

4. Measured with the switching test circuit in Figure 35.

5. In this datasheet, all the switching energies (turn-on energy, turn-off energy and total energy) presented in the tables and Figures include the device RC snubber energy losses.

Typical Performance - Dynamic (continued)

Parameter	Symbol Test	Test Canditians	Value			Linte
		Test Conditions	Min	Тур	Max	- Units
Turn-on delay time	t _{d(on)}	Note 6, V _{DS} =400V, I _D =40A, Gate		10		- ns
Rise time	t _r			45		
Turn-off delay time	t _{d(off)}	Driver = $0V$ to +15V,		50		
Fall time	t _f	Turn-on $R_{G,EXT}=1\Omega$,		11		
Turn-on energy including R_S energy	E _{ON}	Turn-off $R_{G,EXT}=5\Omega$, inductive Load, FWD:		366		μJ
Turn-off energy including R _s energy	E _{OFF}	UJ3D06520TS, RC		135		
Total switching energy	E _{TOTAL}	snubber: $R_s = 10\Omega$ and		501		
Snubber R _s energy during turn-on	E _{RS_ON}	– C _S =200pF, – _ Тј=25°С _		4.4		
Snubber R _s energy during turn-off	E _{RS_OFF}			10		
Turn-on delay time	t _{d(on)}			10		- ns
Rise time	t _r	Note 6,		47		
Turn-off delay time	t _{d(off)}	V_{DS} =400V, I_D =40A, Gate Driver =0V to +15V, Turn-on $R_{G,EXT}$ =1 Ω ,		53		
Fall time	t _f			17		
Turn-on energy including R _S energy	E _{ON}	Turn-off $R_{G,EXT}=5\Omega$, inductive Load, FWD:		450		
Turn-off energy including R _s energy	E _{OFF}	UJ3D06520TS, RC		157		μJ
Total switching energy	E _{TOTAL}	snubber: $R_s=10\Omega$ and $C_s=200pF$, $T_J=150^{\circ}C$		607		
Snubber R _s energy during turn-on	E _{RS_ON}			4.4		
Snubber R _s energy during turn-off	E _{RS_OFF}			10		1

6. Measured with the switching test circuit in Figure 36.

Typical Performance Diagrams

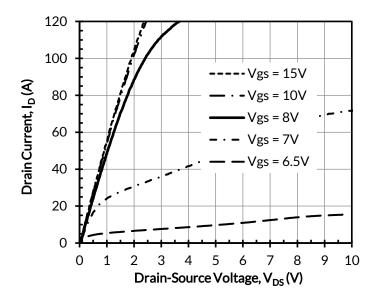


Figure 1. Typical output characteristics at T_J = - 55°C, tp < 250 μ s

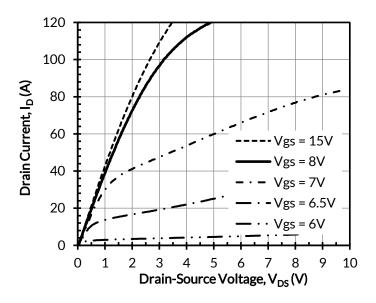


Figure 2. Typical output characteristics at T $_{\rm J}$ = 25°C, tp < 250 μs

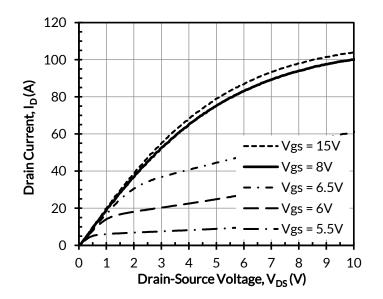


Figure 3. Typical output characteristics at T $_{\rm J}$ = 175°C, tp < 250 μs

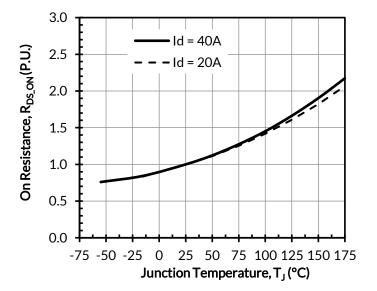


Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V

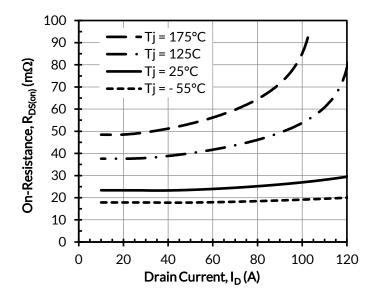


Figure 5. Typical drain-source on-resistances at V_{GS} = 12V

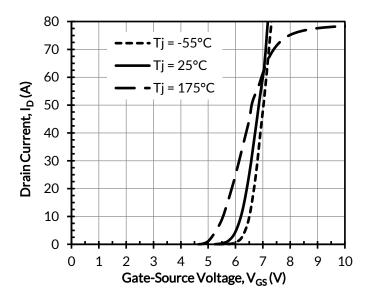


Figure 6. Typical transfer characteristics at V_{DS} = 5V

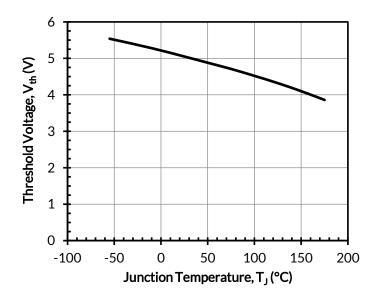


Figure 7. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 10mA

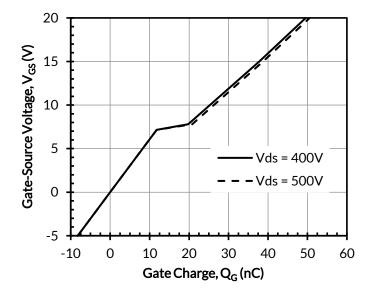


Figure 8. Typical gate charge at $I_D = 40A$

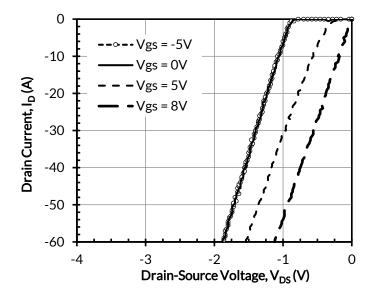


Figure 9. 3rd quadrant characteristics at T_J = -55°C

Figure 10. 3rd quadrant characteristics at $T_J = 25^{\circ}C$

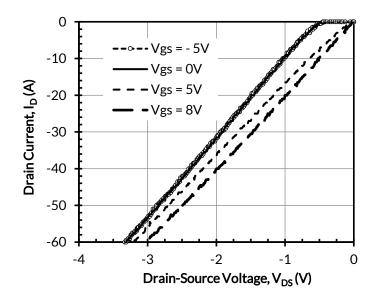


Figure 11. 3rd quadrant characteristics at T_J = 175°C

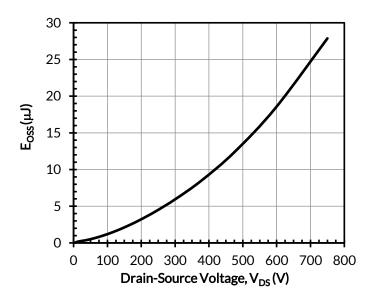


Figure 12. Typical stored energy in C_{OSS} at V_{GS} = 0V

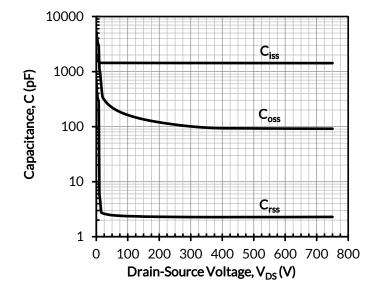


Figure 13. Typical capacitances at f = 100kHz and V_{GS} = 0V

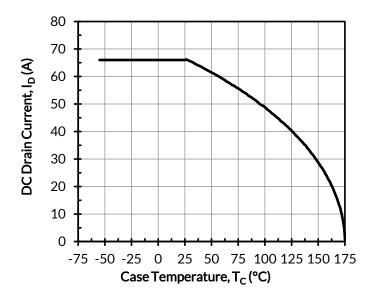


Figure 14. DC drain current derating

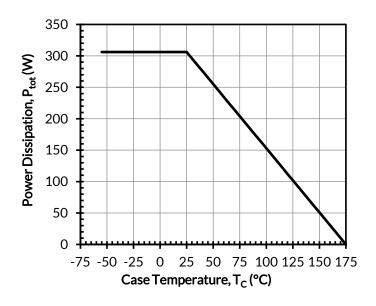


Figure 15. Total power dissipation



Figure 16. Maximum transient thermal impedance

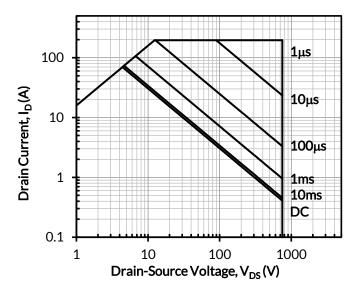
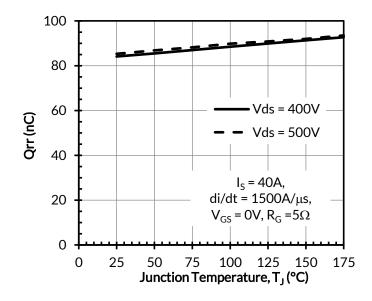



Figure 17. Safe operation area at T_C = 25°C, D = 0, Parameter t_p

Spice

Models

Contact

Sales

Learn

More

0

FET-Jet

Calculator

Buy

Online

Figure 18. Reverse recovery charge Qrr vs. junction temperature

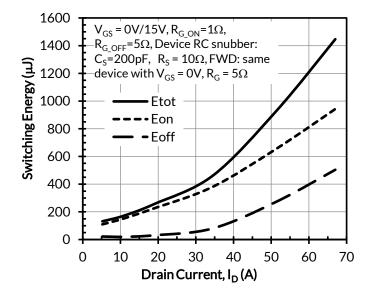


Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

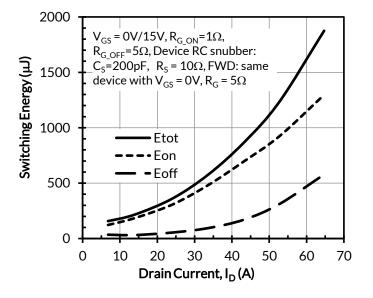


Figure 20. Clamped inductive switching energy vs. drain current at V_{DS} = 500V and T_J = 25°C

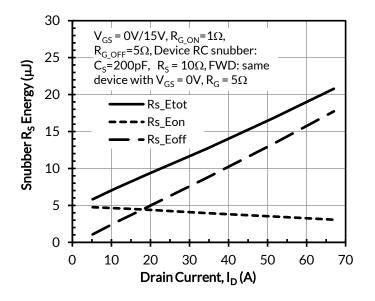


Figure 21. RC snubber energy loss vs. drain current at V_{DS} = 400V and T_J = 25°C

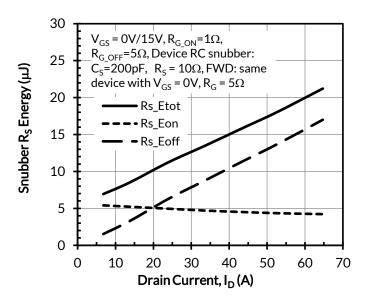


Figure 22. RC snubber energy losses vs. drain current at V_{DS} = 500V and T_J = 25°C

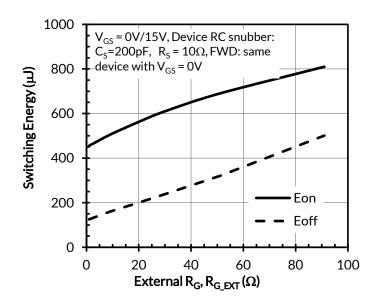


Figure 23. Clamped inductive switching energies vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 40A, and T_J = 25°C

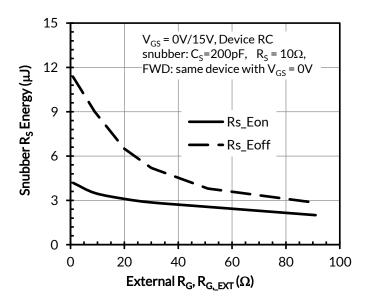
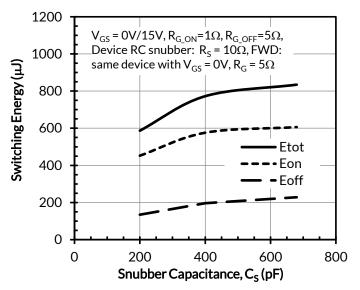
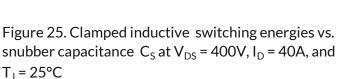




Figure 24. RC snubber energy losses vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 40A, and T_J = 25°C

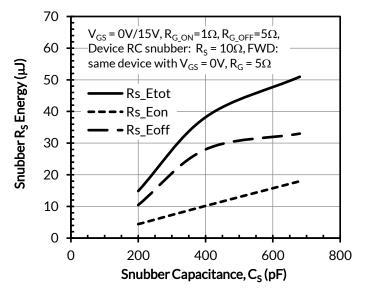


Figure 26. RC snubber energy losses vs. snubber capacitance C_s at V_{DS} = 400V, I_D = 40A, and T_J = 25°C

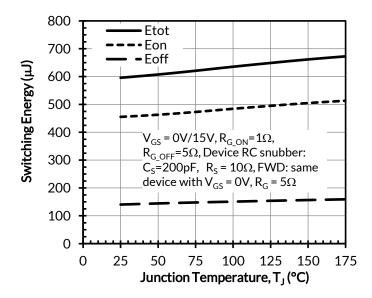


Figure 27. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_D = 40A

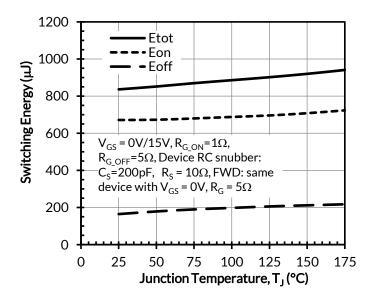


Figure 28. Clamped inductive switching energy vs. junction temperature at V_{DS} =500V and I_D = 40A

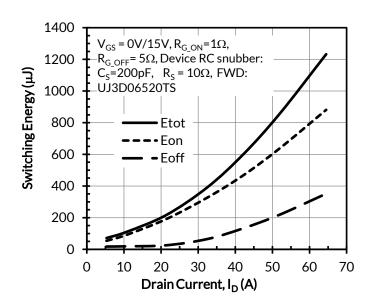


Figure 29. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

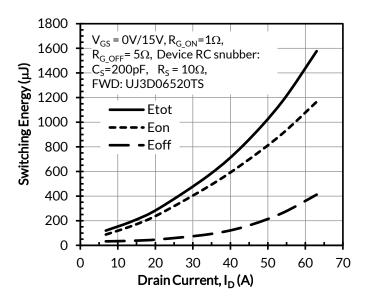


Figure 30. Clamped inductive switching energy vs. drain current at V_{DS} = 500V and T_J = 25°C

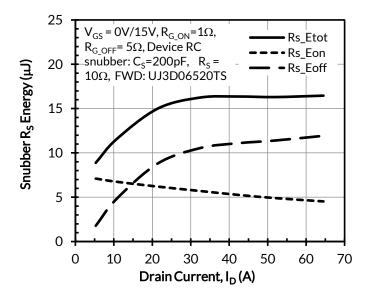


Figure 31. RC snubber energy losses vs. drain current at $V_{\rm DS}$ = 400V and $T_{\rm J}$ = 25°C

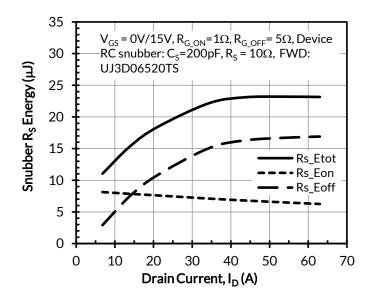


Figure 32. RC snubber energy losses vs. drain current at V_{DS} = 500V and T_J = 25°C

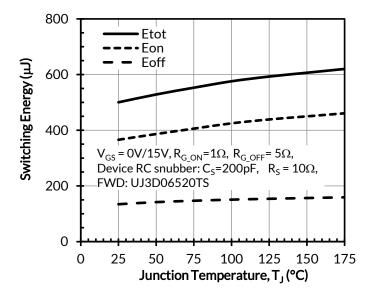


Figure 33. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_D = 40A

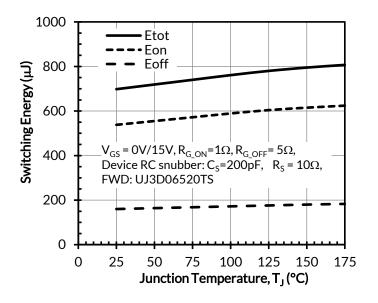


Figure 34. Clamped inductive switching energy vs. junction temperature at V_{DS} =500V and I_D = 40A

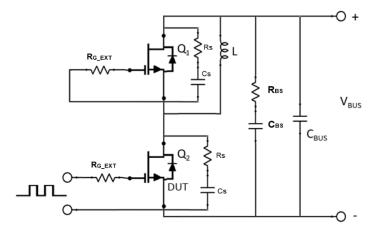


Figure 35. Schematic of the half-bridge mode switching test circuit. Note, a bus RC snubber ($R_{BS} = 2.5\Omega$, $C_{BS} = 100$ nF) is used to reduce the power loop high frequency oscillations.

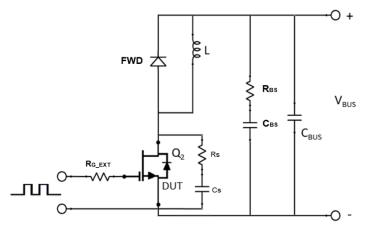


Figure 36. Schematic of the chopper mode switching test circuit. Note, a bus RC snubber ($R_{BS} = 2.5\Omega$, $C_{BS}=100$ nF) is used to reduce the power loop high frequency oscillations.