

UJ4C075023K4S

Part Number	Package	Marking
UJ4C075023K4S	TO-247-4L	UJ4C075023K4S

750V-23m Ω SiC FET

Rev. B, July 2021

Description

The UJ4C075023K4S is a 750V, $23m\Omega$ G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-4L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance R_{DS(on)}: 23mΩ (typ)
- Operating temperature: 175°C (max)
- Excellent reverse recovery: Q_{rr} = 105nC
- Low body diode V_{FSD}: 1.23V
- ◆ Low gate charge: Q_G = 37.8nC
- Threshold voltage V_{G(th)}: 4.8V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected: HBM class 2 and CDM class C3
- TO-247-4L package for faster switching, clean gate waveforms

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		750	V
Cata aguragualtaga	V	DC	-20 to +20	V
Gate-source voltage	V_{GS}	AC (f > 1Hz)	-25 to +25	V
Continuous drain current ¹		T _C = 25°C	66	Α
Continuous drain current	I _D	T _C = 100°C	49	Α
Pulsed drain current ²	I _{DM}	T _C = 25°C	196	Α
Single pulsed avalanche energy ³	E _{AS}	$L=15mH$, $I_{AS}=3A$	67	mJ
SiC FET dv/dt ruggedness	dv/dt	$V_{DS} \le 500V$	150	V/ns
Power dissipation	P _{tot}	T _C = 25°C	306	W
Maximum junction temperature	$T_{J,max}$		175	°C
Operating and storage temperature	T_J, T_{STG}		-55 to 175	°C
Max. lead temperature for soldering, 1/8" from case for 5 seconds	T _L		250	°C

- 1. Limited by $T_{J,max}$
- 2. Pulse width t_p limited by $T_{J,max}$
- 3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter S	Symbol	Test Conditions	Value			Units
	Зуппон		Min	Тур	Max	Office
Thermal resistance, junction-to-case	$R_{\theta JC}$			0.38	0.49	°C/W

Rev. B, July 2021

Electrical Characteristics ($T_J = +25^{\circ}C$ unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions		Units		
			Min	Тур	Max	Units
Drain-source breakdown voltage	BV _{DS}	V_{GS} =0V, I_D =1mA	750			V
Total drain leakage current		V _{DS} =750V, V _{GS} =0V, T _J =25°C		2	30	- µА
	I _{DSS}	V _{DS} =750V, V _{GS} =0V, T _J =175°C		15		
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C, V _{GS} =-20V / +20V		6	±20	μА
Drain-source on-resistance	R _{DS(on)}	V _{GS} =12V, I _D =40A, T _J =25°C		23	29	
		V _{GS} =12V, I _D =40A, T _J =125°C		39		mΩ
		V_{GS} =12V, I_{D} =40A, T_{J} =175°C		50		
Gate threshold voltage	$V_{G(th)}$	V_{DS} =5V, I_{D} =10mA	4	4.8	6	V
Gate resistance	R_{G}	f=1MHz, open drain		4.5		Ω

Typical Performance - Reverse Diode

Parameter	Symbol	Test Conditions		I India		
Parameter			Min	Тур	Max	Units
Diode continuous forward current ¹	I _S	T _C = 25°C			66	Α
Diode pulse current ²	I _{S,pulse}	T _C = 25°C			196	Α
Forward voltage	V_{FSD}	V _{GS} =0V, I _S =20A, T _J =25°C		1.23	1.39	V
		V _{GS} =0V, I _S =20A, T _J =175°C		1.45		
Reverse recovery charge	Q _{rr}	V_R =400V, I_S =40A, V_{GS} =0V, R_{G_EXT} =5 Ω		105		nC
Reverse recovery time	t _{rr}	di/dt=3100A/μs, T _J =25°C		12		ns
Reverse recovery charge	Q _{rr}	V_R =400V, I_S =40A, V_{GS} =0V, R_{G_EXT} =5 Ω		112		nC
Reverse recovery time	t _{rr}	di/dt=3100A/μs, Τ _J =150°C		13		ns

Datasheet: UJ4C075023K4S Rev. B, July 2021 3

Typical Performance - Dynamic

P t	Clvl	Symbol Test Conditions				
Parameter	Symbol		Min	Тур	Max	Units
Input capacitance	C _{iss}	V _{DS} =400V, V _{GS} =0V		1400		
Output capacitance	C _{oss}	f=100kHz		93		pF
Reverse transfer capacitance	C _{rss}	1-100KHZ		2.5		
Effective output capacitance, energy related	C _{oss(er)}	V_{DS} =0V to 400V, V_{GS} =0V		116		pF
Effective output capacitance, time related	C _{oss(tr)}	V_{DS} =0V to 400V, V_{GS} =0V		232		pF
C _{OSS} stored energy	E _{oss}	V _{DS} =400V, V _{GS} =0V		9.3		μJ
Total gate charge	Q_{G}	V _{DS} =400V, I _D =40A,		37.8		
Gate-drain charge	Q_{GD}	$V_{DS} = 400V, V_{D} = 40A,$ $V_{GS} = 0V \text{ to } 15V$		8		nC
Gate-source charge	Q_{GS}	VGS 0 V to 13 V		11.8		
Turn-on delay time	t _{d(on)}			16		- ns
Rise time	t _r	Notes 4 and 5, V _{DS} =400V, I _D =40A, Gate		27		
Turn-off delay time	t _{d(off)}	v_{DS} =400 V, I_D =40A, Gate Driver =0V to +15V,		28		
Fall time	t _f	Turn-on $R_{G,EXT}=1\Omega$,		8		
Turn-on energy including R_S energy	E _{ON}	Turn-off $R_{G,EXT}$ =5 Ω , inductive Load, FWD:		237		
Turn-off energy including R _S energy	E _{OFF}	same device with $V_{GS} = 0V$		50		
Total switching energy	E _{TOTAL}	and $R_G = 5\Omega$, RC snubber: $R_S = 10\Omega$ and $C_S = 200$ pF,		287		μJ
Snubber R _S energy during turn-on	E _{RS_ON}	$T_1 = 25^{\circ}\text{C}$		4.9		
Snubber R _S energy during turn-off	E _{RS_OFF}			17		
Turn-on delay time	t _{d(on)}			19		
Rise time	t _r	Notes 4 and 5, V _{DS} =400V, I _D =40A, Gate		24		ns
Turn-off delay time	t _{d(off)}	Driver = 0V to +15V,		29		
Fall time	t _f	Turn-on $R_{G,EXT}=1\Omega$,		10		
Turn-on energy including R _S energy	E _{ON}	Turn-off $R_{G,EXT}$ =5 Ω , inductive Load, FWD: same device with V_{GS} = 0V and R_{G} = 5 Ω , RC snubber: R_{S} =10 Ω and C_{S} =200pF, T_{J} =150°C		288		
Turn-off energy including R _S energy	E _{OFF}			60		
Total switching energy	E _{TOTAL}			348		μJ
Snubber R _S energy during turn-on	E _{RS_ON}			4		
Snubber R _S energy during turn-off	E _{RS_OFF}			18		

^{4.} Measured with the switching test circuit in Figure 35.

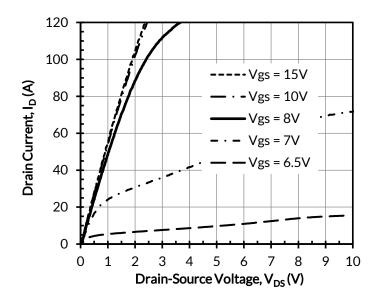
^{5.} In this datasheet, all the switching energies (turn-on energy, turn-off energy and total energy) presented in the tables and Figures include the device RC snubber energy losses.

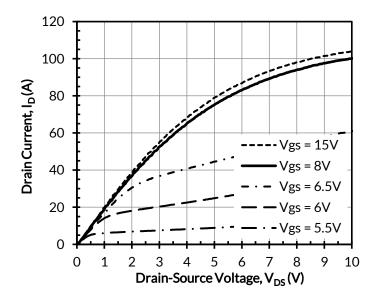
Typical Performance - Dynamic (continued)

Parameter	Symbol	Test Conditions	Value			Units
		rest Conditions	Min	Тур	Max	Offics
Turn-on delay time	t _{d(on)}			17		
Rise time	t _r	Note 6, V _{DS} =400V, I _D =40A, Gate		25		ns
Turn-off delay time	$t_{d(off)}$	Driver =0V to +15V,		22		115
Fall time	t _f	Turn-on $R_{G,EXT}$ =1 Ω ,		7		
Turn-on energy including R _S energy	E _{oN}	Turn-off $R_{G,EXT}$ =5 Ω , inductive Load, FWD:		167		
Turn-off energy including R _S energy	E _{OFF}	UJ3D06520TS, RC		40		
Total switching energy	E _{TOTAL}	snubber: R_S =10 Ω and C_S =200pF,		207		μЈ
Snubber R_S energy during turn-on	E _{RS_ON}			4.3		
Snubber R _S energy during turn-off	E _{RS_OFF}			26		
Turn-on delay time	t _{d(on)}	Note 6, V _{DS} =400V, I _D =40A, Gate		17		
Rise time	t _r			22		ns
Turn-off delay time	t _{d(off)}	Driver =0V to +15V,		23		113
Fall time	t _f	$Turn-on R_{G,EXT}=1\Omega,$ $Turn-off R_{G,EXT}=5\Omega,$ $inductive Load, FWD:$ $UJ3D06520TS, RC$ $snubber: R_{S}=10\Omega \text{ and }$ $C_{S}=200pF,$ $T_{I}=150^{\circ}C$		8		
Turn-on energy including R _S energy	E _{oN}			183		
Turn-off energy including R_S energy	E _{OFF}			58		
Total switching energy	E _{TOTAL}			241		μЈ
Snubber R _S energy during turn-on	E _{RS_ON}			4		
Snubber R _S energy during turn-off	E _{RS_OFF}			22		

^{6.} Measured with the switching test circuit in Figure 35.

Rev. B, July 2021




Typical Performance Diagrams

120 100 Drain Current, I_D (A) 80 60 Vgs = 15V Vgs = 8V 40 Vgs = 7V- Vgs = 6.5V 20 Vgs = 6V 0 1 2 3 5 10 Drain-Source Voltage, $V_{DS}(V)$

Figure 1. Typical output characteristics at T_J = - 55°C, tp < 250 μ s

Figure 2. Typical output characteristics at $T_J = 25$ °C, tp < 250 μ s

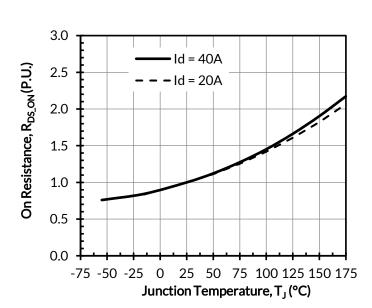
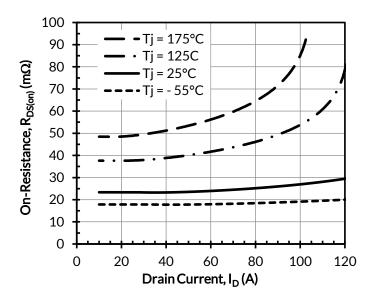


Figure 3. Typical output characteristics at T_J = 175°C, tp < 250 μ s

Figure 4. Normalized on-resistance vs. temperature at $V_{GS} = 12V$



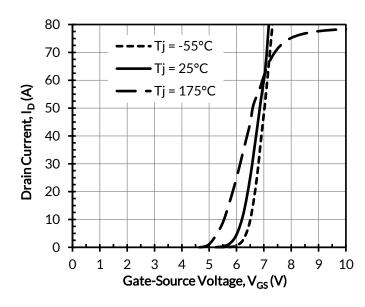
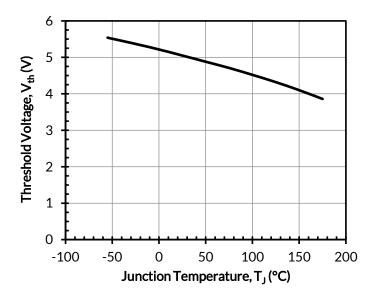



Figure 5. Typical drain-source on-resistances at V_{GS} = 12V

Figure 6. Typical transfer characteristics at V_{DS} = 5V

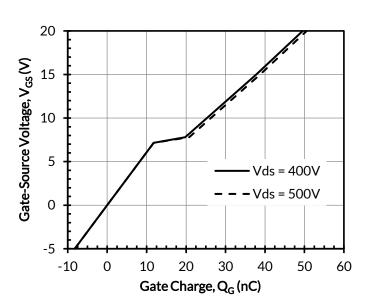


Figure 7. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 10mA

Figure 8. Typical gate charge at I_D = 40A

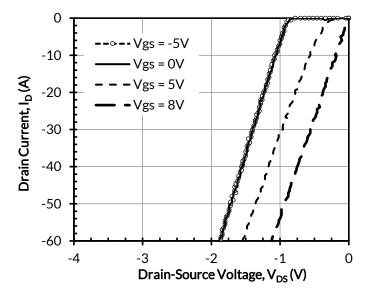


Figure 9. 3rd quadrant characteristics at $T_J = -55$ °C

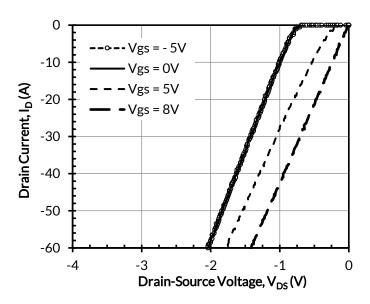


Figure 10. 3rd quadrant characteristics at T_J = 25°C

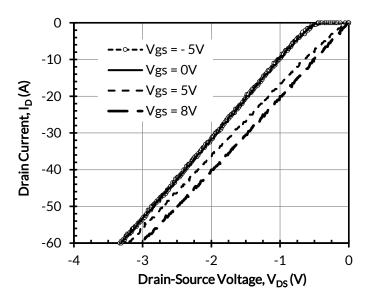


Figure 11. 3rd quadrant characteristics at $T_J = 175$ °C

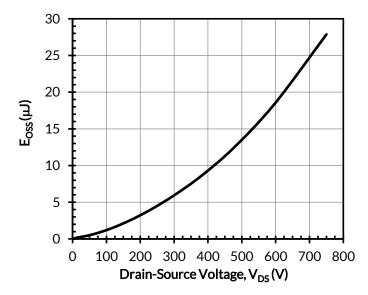
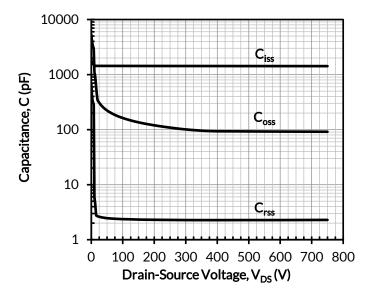
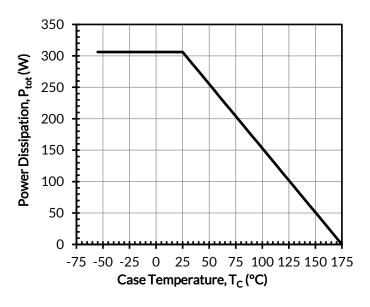


Figure 12. Typical stored energy in C_{OSS} at $V_{GS} = 0V$





80 70 60 40 40 40 20 10 -75 -50 -25 0 25 50 75 100 125 150 175 Case Temperature, T_c (°C)

Figure 13. Typical capacitances at f = 100kHz and $V_{GS} = 0V$

Figure 14. DC drain current derating

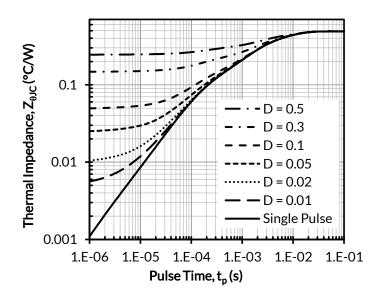


Figure 15. Total power dissipation

Figure 16. Maximum transient thermal impedance

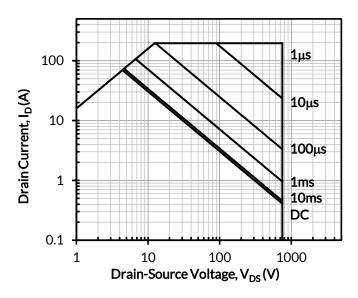


Figure 17. Safe operation area at T_C = 25°C, D = 0, Parameter t_p

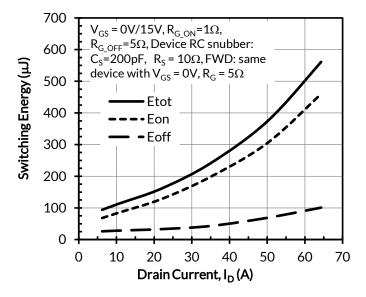


Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

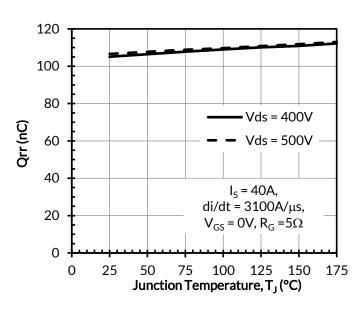


Figure 18. Reverse recovery charge Qrr vs. junction temperature

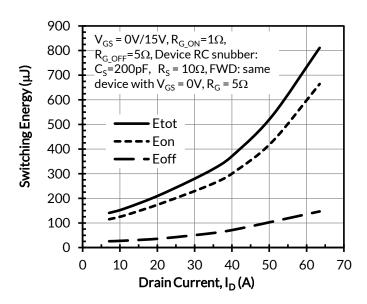
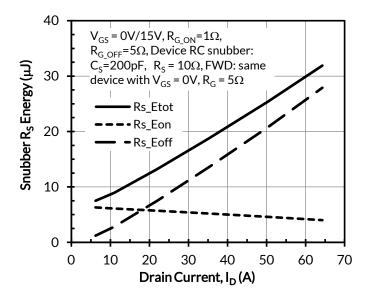
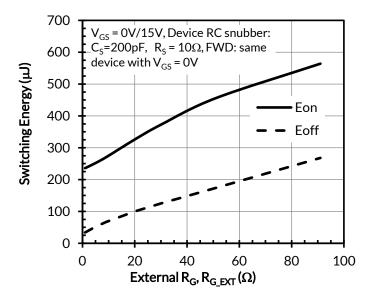


Figure 20. Clamped inductive switching energy vs. drain current at V_{DS} = 500V and T_{J} = 25°C





50 $V_{GS} = 0V/15V, R_{GON} = 1\Omega,$ R_{G_OFF} =5 Ω , Device RC snubber: C_s =200pF, R_s = 10 Ω , FWD: same 40 Snubber R_s Energy (µJ) device with $V_{GS} = 0V$, $R_G = 5\Omega$ 30 20 Rs_Etot - Rs_Eon Rs_Eoff 10 0 10 20 30 40 50 60 70 0 Drain Current, ID (A)

Figure 21. RC snubber energy loss vs. drain current at $V_{DS} = 400V$ and $T_J = 25^{\circ}C$

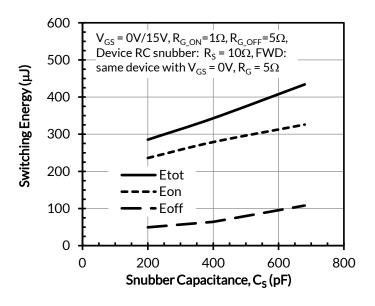
Figure 22. RC snubber energy losses vs. drain current at V_{DS} = 500V and T_J = 25°C

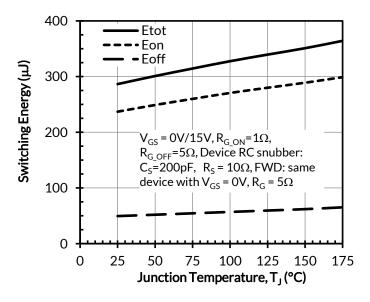
25 $V_{GS} = 0V/15V$, Device RC snubber: $C_s = 200 pF$, $R_s = 10 \Omega$, 20 FWD: same device with $V_{GS} = 0V$ Snubber R_S Energy (µJ) 15 Rs_Eon - Rs_Eoff 10 5 0 20 40 60 80 0 100 External R_G , $R_{G_EXT}(\Omega)$

Figure 23. Clamped inductive switching energies vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 40A, and T_J = 25°C

Figure 24. RC snubber energy losses vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 40A, and T_I = 25°C

Datasheet: UJ4C075023K4S Rev. B, July 2021 11





80 $V_{GS} = 0V/15V, R_{GON} = 1\Omega, R_{GOFF} = 5\Omega,$ Device RC snubber: $R_S = 10\Omega$, FWD: same device with $V_{GS} = 0V$, $R_G = 5\Omega$ Snubber R_S Energy (µJ) 60 Rs_Etot Rs_Eon 40 Rs_Eoff 20 0 0 200 400 600 800 Snubber Capacitance, C_S (pF)

Figure 25. Clamped inductive switching energies vs. snubber capacitance C_S at V_{DS} = 400V, I_D = 40A, and T_1 = 25°C

Figure 26. RC snubber energy losses vs. snubber capacitance C_S at V_{DS} = 400V, I_D = 40A, and T_J = 25°C

600 Etot Eon 500 Switching Energy (µJ) Eoff 400 300 $V_{GS} = 0V/15V, R_{G_ON} = 1\Omega,$ $R_{G OFF} = 5\Omega$, Device RC snubber: 200 $C_s = 200 \text{pF}$, $R_s = 10 \Omega$, FWD: same device with $V_{GS} = 0V$, $R_G = 5\Omega$ 100 0 100 125 0 25 75 150 Junction Temperature, T₁ (°C)

Figure 27. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_{D} = 40A

Figure 28. Clamped inductive switching energy vs. junction temperature at V_{DS} = 500V and I_D = 40A

Datasheet: UJ4C075023K4S Rev. B, July 2021 12

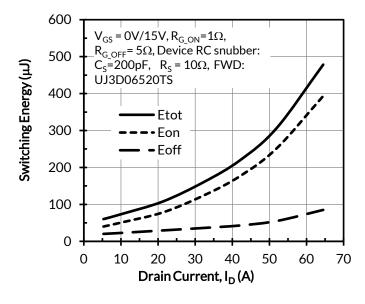


Figure 29. Clamped inductive switching energy vs. drain current at $V_{DS} = 400V$ and $T_J = 25^{\circ}C$

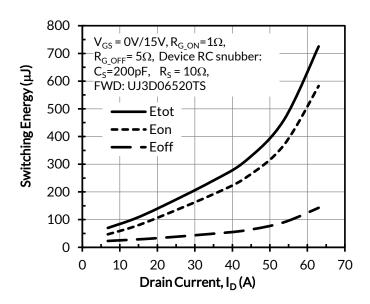


Figure 30. Clamped inductive switching energy vs. drain current at V_{DS} = 500V and T_J = 25°C

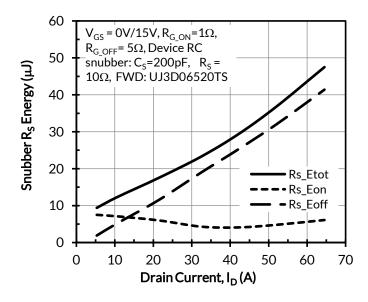


Figure 31. RC snubber energy losses vs. drain current at V_{DS} = 400V and T_J = 25°C

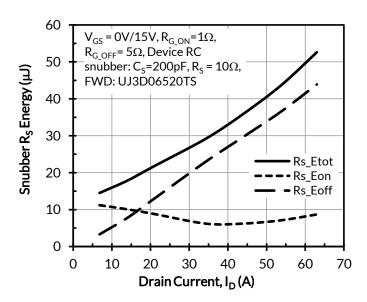
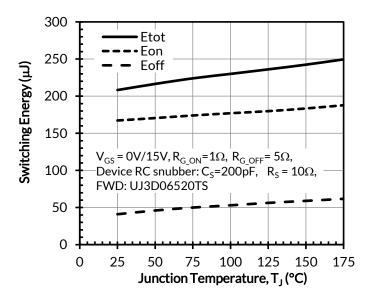
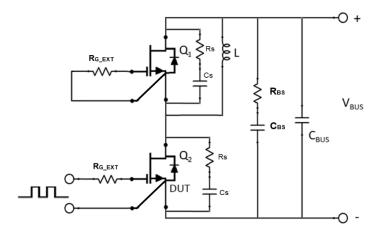


Figure 32. RC snubber energy losses vs. drain current at V_{DS} = 500V and T_J = 25°C





500 $V_{GS} = 0V/15V, R_{G ON} = 1\Omega, R_{G OFF} = 5\Omega,$ Device RC snubber: $C_s = 200 pF$, $R_s = 10\Omega$, FWD: UJ3D06520TS 400 Switching Energy (µJ) 300 200 Etot Eon Eoff 100 0 0 25 50 75 100 125 150 Junction Temperature, T₁ (°C)

Figure 33. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_{D} = 40A

Figure 34. Clamped inductive switching energy vs. junction temperature at V_{DS} = 500V and I_D = 40A

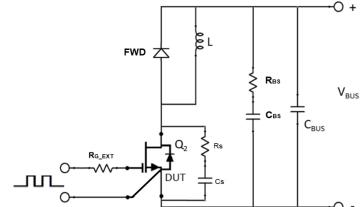


Figure 35. Schematic of the half-bridge mode switching test circuit. Note, a bus RC snubber (R_{BS} = 2.5 Ω , C_{BS} =100nF) is used to reduce the power loop high frequency oscillations.

Figure 36. Schematic of the chopper mode switching test circuit. Note, a bus RC snubber (R_{BS} = 2.5 Ω , C_{BS} =100nF) is used to reduce the power loop high frequency oscillations.