

$750V-33m\Omega$ SiC FET

Rev. B, July 2021

DATASHEET

UJ4C075033K4S

Part Number	Package	Marking
UJ4C075033K4S	TO-247-4L	UJ4C075033K4S

Description

The UJ4C075033K4S is a 750V, $33m\Omega$ G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-4L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance R_{DS(on)}: 33mΩ (typ)
- Operating temperature: 175°C (max)
- Excellent reverse recovery: Q_{rr} = 88nC
- Low body diode V_{FSD}: 1.26V
- Low gate charge: Q_G = 37.8nC
- Threshold voltage V_{G(th)}: 4.8V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected: HBM class 2 and CDM class C3
- TO-247-4L package for faster switching, clean gate waveforms

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V _{DS}		750	V
Cata aquiraquialtaga	V	DC	-20 to +20	V
Gate-source voltage	V _{GS}	AC (f > 1Hz)	-25 to +25	V
Continuous drain current ¹	1	T _C = 25°C	47	А
	I _D	T _C =100°C	35	А
Pulsed drain current ²	I _{DM}	T _C = 25°C	140	А
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =2.4A	43	mJ
SiC FET dv/dt ruggedness	dv/dt	$V_{DS} \le 500V$	200	V/ns
Power dissipation	P _{tot}	T _C = 25°C	242	W
Maximum junction temperature	T _{J,max}		175	°C
Operating and storage temperature	T _J , T _{STG}		-55 to 175	°C
Max. lead temperature for soldering, 1/8" from case for 5 seconds	TL		250	°C

1. Limited by $T_{J,max}$

2. Pulse width t_p limited by $T_{J,max}$

3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			- Units
Parameter			Min	Тур	Max	Onits
Thermal resistance, junction-to-case	$R_{ ext{ heta}JC}$			0.48	0.62	°C/W

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions		11.20.		
			Min	Тур	Max	Units
Drain-source breakdown voltage	BV _{DS}	V_{GS} =0V, I_{D} =1mA	750			V
Total drain leakage current		V _{DS} =750V, V _{GS} =0V, T _J =25°C		2	20	
	I _{DSS}	V _{DS} =750V, V _{GS} =0V, T _J =175°C		20		μA
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C, V _{GS} =-20V / +20V		6	±20	μA
Drain-source on-resistance	R _{DS(on)}	V _{GS} =12V, I _D =30A, T _J =25°C		33	41	
		V _{GS} =12V, I _D =30A, T _J =125°C		57		mΩ
		V _{GS} =12V, I _D =30A, T _J =175°C		75		
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =10mA	4	4.8	6	V
Gate resistance	R _G	f=1MHz, open drain		4.5		Ω

Typical Performance - Reverse Diode

Parameter	Symbol	Test Conditions		- Units		
			Min	Тур	Max	Units
Diode continuous forward current ¹	ls	T _C = 25°C			47	А
Diode pulse current ²	I _{S,pulse}	T _C = 25°C			140	А
Forward voltage	V _{FSD}	V _{GS} =0V, I _S =15A, T _J =25°C		1.26	1.42	v
		V _{GS} =0V, I _S =15A, T _J =175°C		1.59		
Reverse recovery charge	Q _{rr}	V_R =400V, I _S =30A, V_{GS} =0V, R _{G_EXT} =5 Ω		88		nC
Reverse recovery time	t _{rr}	di/dt=3100A/µs, T_=25°C		11.5		ns
Reverse recovery charge	Q _{rr}	V_R =400V, I _S =30A, V_{GS} =0V, R _{G_EXT} =5 Ω		95		nC
Reverse recovery time	t _{rr}	di/dt=3100A/µs, T_=150°C		12		ns

Typical Performance - Dynamic

Parameter	Symbol	Test Can ditions	Value			L Instein
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Input capacitance	C _{iss}			1400		
Output capacitance	C _{oss}	- V _{DS} =400V, V _{GS} =0V - f=100kHz -		68		pF
Reverse transfer capacitance	C _{rss}			2.5		
Effective output capacitance, energy related	C _{oss(er)}	V_{DS} =0V to 400V, V_{GS} =0V		83		pF
Effective output capacitance, time related	C _{oss(tr)}	V_{DS} =0V to 400V, V_{GS} =0V		162		pF
C _{OSS} stored energy	E _{oss}	V_{DS} =400V, V_{GS} =0V		6.6		μJ
Total gate charge	Q _G	V==400V_I_==30A		37.8		
Gate-drain charge	Q_{GD}	$V_{DS}=400V, I_{D}=30A,$ $V_{GS}=0V \text{ to } 15V$ Notes 4 and 5, $V_{DS}=400V, I_{D}=30A, \text{ Gate}$ Driver =0V to +15V, Turn-on R _{G,EXT} =1\Omega, Turn-off R _{G,EXT} =5\Omega, inductive Load, FWD: same device with $V_{GS}=0V \text{ and } R_{G}=5\Omega,$ RC snubber: R _S =15\Omega and		8		nC
Gate-source charge	Q_{GS}	VGS - 0V 10 13 V		11.8		
Turn-on delay time	t _{d(on)}	Notes 4 and 5.		12		
Rise time	t _r	$V_{DS}=400V, I_{D}=30A, Gate$ $Driver = 0V to +15V,$ $Turn-on R_{G,EXT}=1\Omega,$ $Turn-off R_{G,EXT}=5\Omega,$		19		
Turn-off delay time	$t_{d(off)}$			18		ns
Fall time	t _f	-,		7		
Turn-on energy including R _s energy	E _{ON}	inductive Load,		131		
Turn-off energy including R_s energy	E _{OFF}	$V_{DS}=400V, I_{D}=30A, Gate$ $Driver = 0V to +15V,$ $Turn-on R_{G,EXT}=1\Omega,$ $Turn-off R_{G,EXT}=5\Omega,$ inductive Load, FWD: same device with $V_{GS} = 0V and R_{G} = 5\Omega,$		24		
Total switching energy	E _{TOTAL}			155		μJ
Snubber R_s energy during turn-on	E _{RS_ON}	$V_{GS}=0V$ $V_{DS}=400V, V_{GS}=0V$ $V_{DS}=400V, I_{D}=30A, V_{GS}=0V to 15V$ Notes 4 and 5, $V_{DS}=400V, I_{D}=30A, Gate$ Driver =0V to +15V, Turn-on R _{G,EXT} =1Ω, Turn-off R _{G,EXT} =5Ω, inductive Load, FWD: same device with $V_{GS}=0V and R_{G}=5\Omega,$		3.2		
Snubber R_s energy during turn-off	E_{RS_OFF}	- 1 _J =25°C		10		
Turn-on delay time	t _{d(on)}	Notes 4 and 5		13		
Rise time	t _r			21		nc
Turn-off delay time	$t_{d(off)}$			20		ns
Fall time	t _f	Turn-on $R_{G,EXT} = 1\Omega$, Turn-off $R_{G,EXT} = 5\Omega$,		9		
Turn-on energy including R_s energy	E _{ON}	inductive Load,		160		
Turn-off energy including R_s energy	E _{OFF}	FWD: same device with $V_{GS} = 0V$ and $R_G = 5\Omega$,		41		
Total switching energy	E _{TOTAL}	RC snubber: $R_s = 15\Omega$ and		201		μJ
Snubber R_s energy during turn-on	E _{RS_ON}	C _S =100pF,		3		
Snubber R _s energy during turn-off	E_{RS_OFF}	T _J =150°C		9.6		

4. Measured with the switching test circuit in Figure 35.

5. In this datasheet, all the switching energies (turn-on energy, turn-off energy and total energy) presented in the tables and Figures include the device RC snubber energy losses.

Typical Performance - Dynamic (continued)

Parameter	Cumple of	Symbol Test Conditions		Value		
	Symbol	Test Conditions	Min	Тур	Max	- Units
Turn-on delay time	t _{d(on)}			11.5		
Rise time	t _r	Note 6, V _{DS} =400V, I _D =30A, Gate		19		ns
Turn-off delay time	t _{d(off)}	Driver = $0V$ to +15V,		17.5		
Fall time	t _f	Turn-on $R_{G,EXT}=1\Omega$,		6		
Turn-on energy including R _S energy	E _{ON}	Turn-off $R_{G,EXT} = 5\Omega$, inductive Load,		114		
Turn-off energy including R _s energy	E _{OFF}	FWD: UJ3D06520TS,		22]
Total switching energy	E _{TOTAL}	RC snubber: $R_s=15\Omega$ and C _s =100pF,		136		μJ
Snubber R _s energy during turn-on	E _{RS_ON}	C _S =100pP, Τ _I =25°C		4.1		
Snubber R _s energy during turn-off	E _{RS_OFF}			14		
Turn-on delay time	t _{d(on)}			13		ns
Rise time	t _r	Note 6, V _{DS} =400V, I _D =30A, Gate		16		
Turn-off delay time	t _{d(off)}	Driver = $0V$ to +15V,		23		
Fall time	t _f	Turn-on $R_{G,EXT}=1\Omega$, Turn-		7]
Turn-on energy including R _s energy	E _{ON}	off $R_{G,EXT}=5\Omega$, inductive Load,		137		
Turn-off energy including R _s energy	E _{OFF}	FWD: UJ3D06520TS,		39		
Total switching energy	E _{TOTAL}	$\begin{array}{c c} & \text{RC snubber: } R_{S}=15\Omega \text{ and} \\ & C_{S}=100\text{pF}, \\ N & T_{J}=150^{\circ}\text{C} \end{array}$		176		μJ
Snubber R _s energy during turn-on	E _{RS_ON}			4		1
Snubber R _s energy during turn-off	E _{RS_OFF}			14		1

6. Measured with the switching test circuit in Figure 36.

Π

Learn

Typical Performance Diagrams

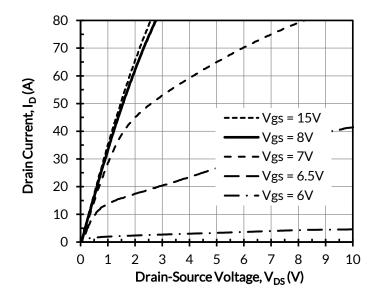


Figure 1. Typical output characteristics at T $_{\rm J}$ = - 55°C, tp < 250 μs

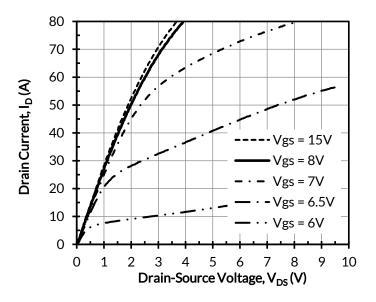


Figure 2. Typical output characteristics at T $_{\rm J}$ = 25°C, tp < 250 μs

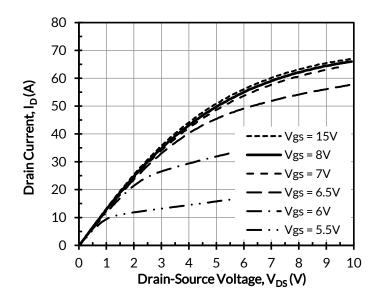


Figure 3. Typical output characteristics at T $_{\rm J}$ = 175°C, tp < 250 μs

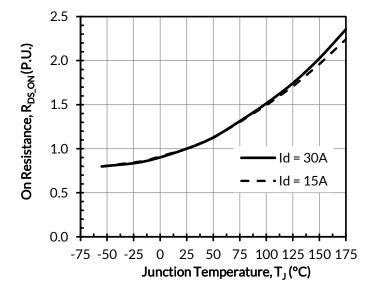


Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V

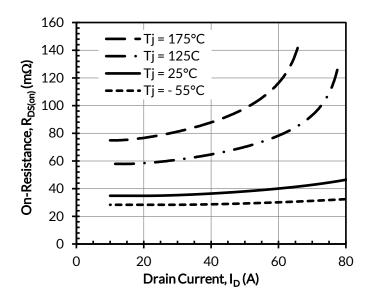


Figure 5. Typical drain-source on-resistances at V_{GS} = 12V

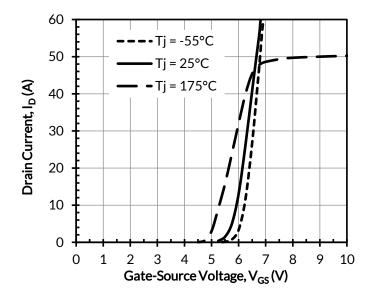


Figure 6. Typical transfer characteristics at V_{DS} = 5V

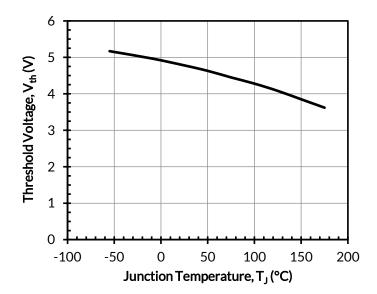


Figure 7. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 10mA

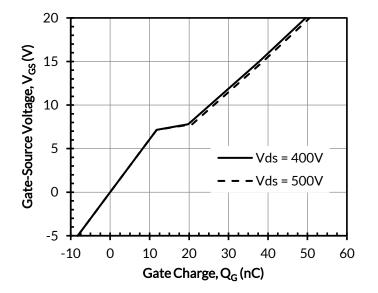


Figure 8. Typical gate charge at I_D = 30A

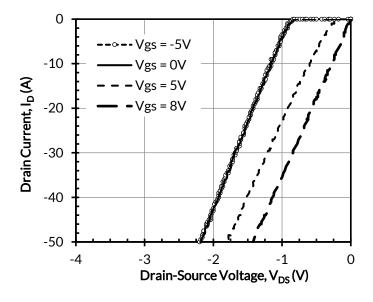


Figure 9. 3rd quadrant characteristics at T_J = -55°C

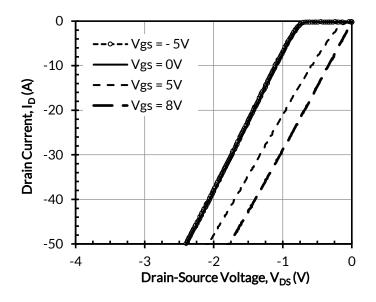


Figure 10. 3rd quadrant characteristics at $T_J = 25^{\circ}C$

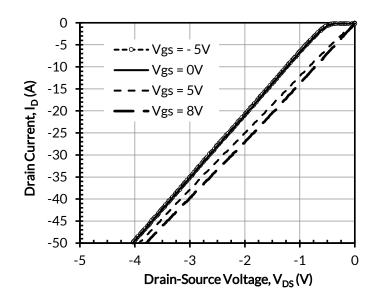


Figure 11. 3rd quadrant characteristics at T_J = 175°C

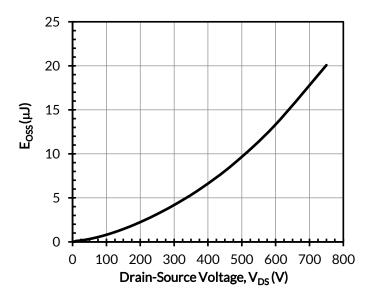
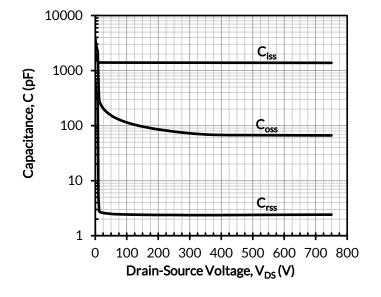
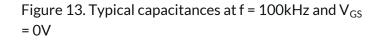




Figure 12. Typical stored energy in C_{OSS} at V_{GS} = 0V

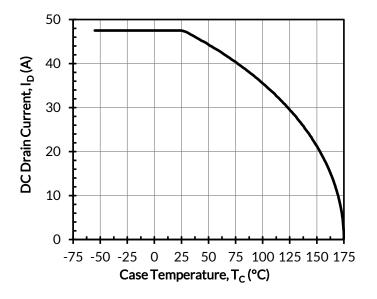


Figure 14. DC drain current derating

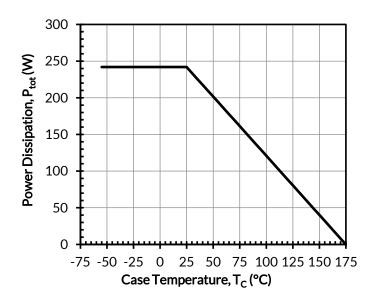


Figure 15. Total power dissipation

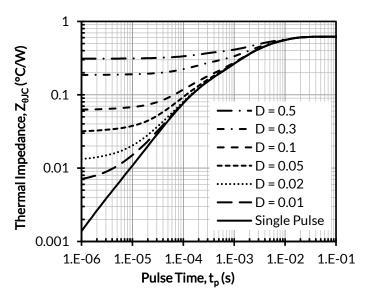


Figure 16. Maximum transient thermal impedance

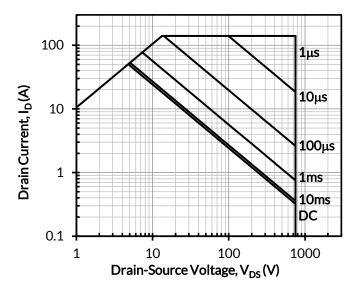
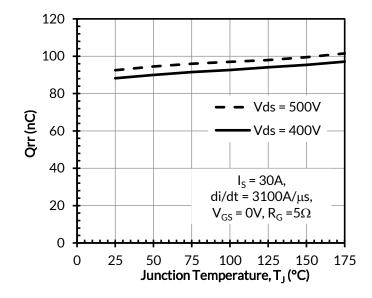



Figure 17. Safe operation area at T_C = 25°C, D = 0, Parameter t_p

Spice Models

Contact

Learn

More

FET-Jet

Calculator

Buy

Online

Figure 18. Reverse recovery charge Qrr vs. junction temperature

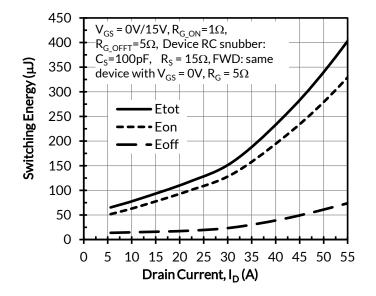


Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

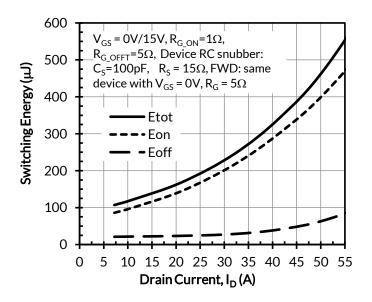


Figure 20. Clamped inductive switching energy vs. drain current at V_{DS} = 500V and T_J = 25°C

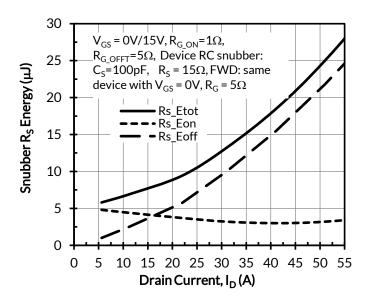


Figure 21. RC snubber energy loss vs. drain current at V_{DS} = 400V and T_J = 25°C

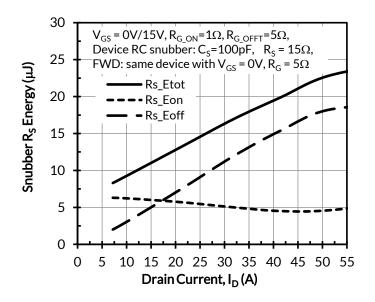


Figure 22. RC snubber energy losses vs. drain current at V_{DS} = 500V and T_J = 25°C

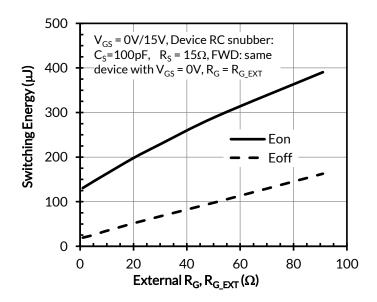


Figure 23. Clamped inductive switching energies vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 30A, and T_J = 25°C

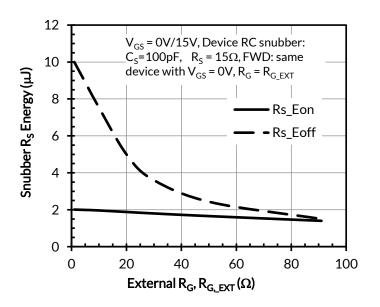


Figure 24. RC snubber energy losses vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 30A, and T_1 = 25°C

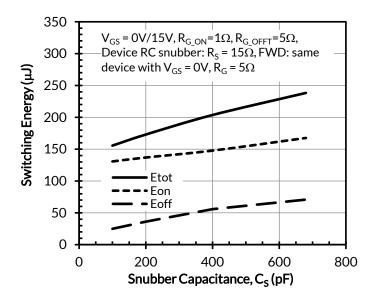


Figure 25. Clamped inductive switching energies vs. snubber capacitance C_S at V_{DS} = 400V, I_D = 30A, and T_J = 25°C

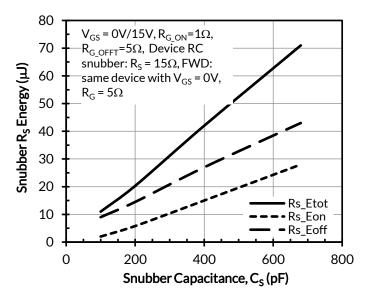


Figure 26. RC snubber energy losses vs. snubber capacitance C_s at V_{DS} = 400V, I_D = 30A, and T_J = 25°C

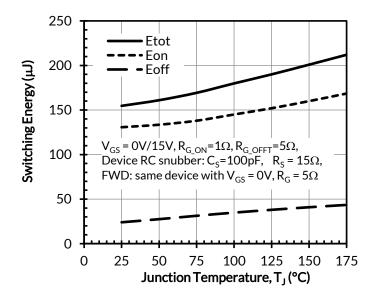


Figure 27. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_D = 30A

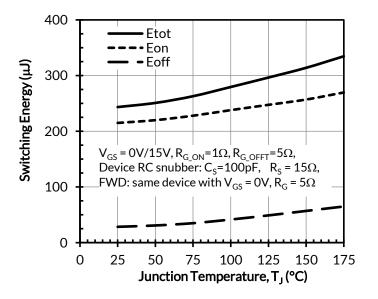


Figure 28. Clamped inductive switching energy vs. junction temperature at V_{DS} =500V and I_D = 30A

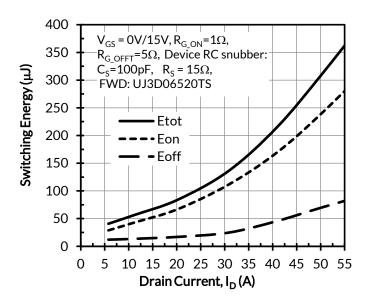


Figure 29. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

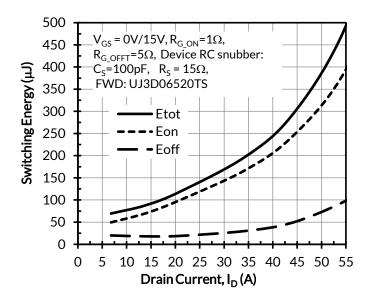


Figure 30. Clamped inductive switching energy vs. drain current at V_{DS} = 500V and T_J = 25°C

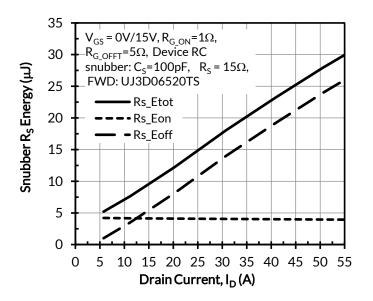


Figure 31. RC snubber energy losses vs. drain current at $V_{\rm DS}$ = 400V and $T_{\rm J}$ = 25°C

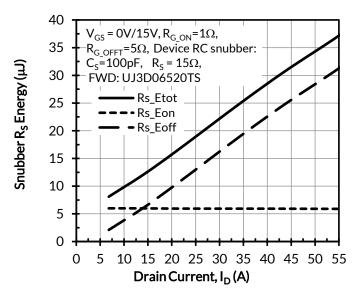
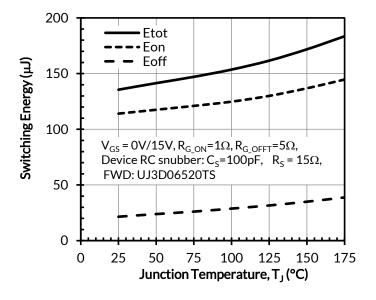
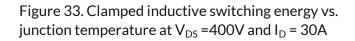




Figure 32. RC snubber energy losses vs. drain current at V_{DS} = 500V and T_J = 25°C

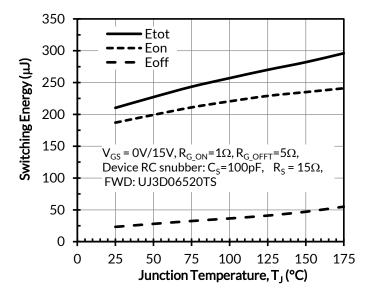


Figure 34. Clamped inductive switching energy vs. junction temperature at V_{DS} =500V and I_D = 30A

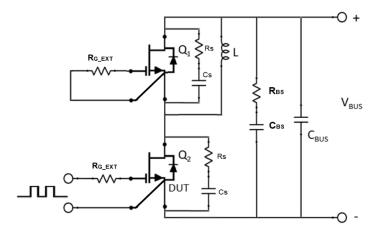


Figure 35. Schematic of the half-bridge mode switching test circuit. Note, a bus RC snubber (R_{BS} = 2.5 Ω , C_{BS} =100nF) is used to reduce the power loop high frequency oscillations.

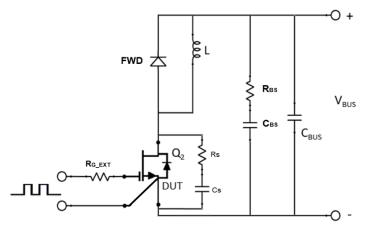


Figure 36. Schematic of the chopper mode switching test circuit. Note, a bus RC snubber ($R_{BS} = 2.5\Omega$, $C_{BS}=100$ nF) is used to reduce the power loop high frequency oscillations.