

DATASHEET

UJ4C075044B7S

Part Number	Package	Marking
UJ4C075044B7S	D ² PAK-7L	UJ4C075044B7S

750V-44m Ω SiC FET

Rev. B, March 2022

Description

The UJ4C075044B7S is a 750V, 44m Ω G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the D²PAK-7L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance R_{DS(on)}: 44mΩ (typ)
- Operating temperature: 175°C (max)
- Excellent reverse recovery: Q_{rr} = 55nC
- Low body diode V_{FSD}: 1.2V
- ◆ Low gate charge: Q_G = 37.8nC
- Threshold voltage V_{G(th)}: 4.8V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected: HBM class 2 and CDM class C3
- D²PAK-7L package for faster switching, clean gate waveforms

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		750	V
Cata assumes valtage	V_{GS}	DC	-20 to +20	V
Gate-source voltage	∨ GS	AC (f > 1Hz)	-25 to +25	V
Continuous drain current ¹		T _C =25°C	35.6	Α
Continuous drain current	ID	T _C =100°C	26	Α
Pulsed drain current ²	I _{DM}	T _C = 25°C	110	Α
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =2.1A	33	mJ
SiC FET dv/dt ruggedness	dv/dt	$V_{DS} \leq 500V$	200	V/ns
Power dissipation	P _{tot}	T _C = 25°C	181	W
Maximum junction temperature	$T_{J,max}$		175	°C
Operating and storage temperature	T_J, T_{STG}		-55 to 175	°C
Reflow soldering temperature	T_{solder}	reflow MSL 1	245	°C

- 1. Limited by $T_{J,max}$
- 2. Pulse width t_p limited by $T_{J,max}$
- 3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			Units
			Min	Тур	Max	Offics
Thermal resistance, junction-to-case	$R_{ heta$ JC			0.64	0.83	°C/W

Rev. B, March 2022

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions		Units		
			Min	Тур	Max	Offics
Drain-source breakdown voltage	BV _{DS}	V_{GS} =0V, I_D =1mA	750			V
		V _{DS} =750V,		1.5	15	μΑ
Total drain leakage current	I _{DSS}	V_{GS} =0V, T_J =25°C				
rotal di alli leakage cui i elit	555	V _{DS} =750V, V _{GS} =0V, T _J =175°C		15		
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C, V _{GS} =-20V / +20V		6	±20	μА
Drain-source on-resistance	R _{DS(on)}	V _{GS} =12V, I _D =25A, T _J =25°C		44	56	
		V _{GS} =12V, I _D =25A, T _J =125°C		75		mΩ
		V _{GS} =12V, I _D =25A, T _J =175°C		101		
Gate threshold voltage	$V_{G(th)}$	V_{DS} =5V, I_D =10mA	4	4.8	6	V
Gate resistance	R_{G}	f=1MHz, open drain		4.5		Ω

Typical Performance - Reverse Diode

Parameter	Symbol	Test Conditions		Unite		
			Min	Тур	Max	Units
Diode continuous forward current ¹	I _S	T _C = 25°C			35.6	Α
Diode pulse current ²	$I_{S,pulse}$	T _C =25°C			110	Α
Forward voltage	V_{FSD}	V _{GS} =0V, I _S =10A, T _J =25°C		1.2	1.36	V
		V _{GS} =0V, I _S =10A, T _J =175°C		1.42		
Reverse recovery charge	Q _{rr}	V_R =400V, I_S =25A, V_{GS} =0V, R_{G_EXT} =50 Ω		55		nC
Reverse recovery time	t _{rr}	di/dt=1000A/μs, Τ _J =25°C		10.4		ns
Reverse recovery charge	Q _{rr}	V_R =400V, I_S =25A, V_{GS} =0V, R_{G_EXT} =50 Ω		60		nC
Reverse recovery time	t _{rr}	di/dt=1000A/μs, Τ _J =150°C		11.2		ns

Datasheet: UJ4C075044B7S Rev. B, March 2022 3

Typical Performance - Dynamic

Deventer	Symbol	Test Conditions	Value			Units
Parameter	Symbol	rest Conditions	Min	Тур	Max	UTILS
Input capacitance	C _{iss}	- V _{DS} =400V, V _{GS} =0V - f=100kHz		1400		
Output capacitance	C _{oss}			55		pF
Reverse transfer capacitance	C_{rss}	1-100KHZ		2.5		
Effective output capacitance, energy related	C _{oss(er)}	V_{DS} =0V to 400V, V_{GS} =0V		66.4		pF
Effective output capacitance, time related	C _{oss(tr)}	V_{DS} =0V to 400V, V_{GS} =0V		131		pF
C _{OSS} stored energy	E _{oss}	V_{DS} =400V, V_{GS} =0V		5.3		μJ
Total gate charge	Q_G	- V _{DS} =400V, I _D =25A, -		37.8		
Gate-drain charge	Q_{GD}	$V_{DS} = 400 \text{ V}, V_{DS} = 25 \text{ A},$ $V_{GS} = 0 \text{ V to } 15 \text{ V}$		8		nC
Gate-source charge	Q_{GS}	VGS 0V to 13V		11.8		
Turn-on delay time	t _{d(on)}	Notes 4,		11		ns
Rise time	t _r	V_{DS} =400V, I_D =25A, Gate $-$ Driver =0V to +15V, $-$ Turn-on $R_{G,EXT}$ = 1Ω ,		23		
Turn-off delay time	t _{d(off)}			83		
Fall time	t _f	Turn-off $R_{G,EXT}$ =50 Ω ,		12		
Turn-on energy including R_{S} energy	E _{ON}	inductive Load, FWD: same device with V _{GS}		131		
Turn-off energy including R _S energy	E _{OFF}	= 0V and $R_G = 50\Omega$,		66		μЈ
Total switching energy	E _{TOTAL}	T _J =25°C		197		
Turn-on delay time	t _{d(on)}	Notes 4,		10.4		
Rise time	t _r	V_{DS} =400V, I_{D} =25A, Gate Driver =0V to +15V,		23		ns
Turn-off delay time	$t_{d(off)}$	Driver = 0V to +15V, Turn-on $R_{G,EXT} = 1\Omega$,		164		115
Fall time	t _f	Turn-off $R_{G,EXT}$ =50 Ω ,		14.4		
Turn-on energy including R_{S} energy	E _{on}	inductive Load, FWD: same device with V _{GS}		145		
Turn-off energy including R _S energy	E _{OFF}	= 0V and $R_G = 50\Omega$,		96		μЈ
Total switching energy	E _{TOTAL}	T _J =150°C		241		

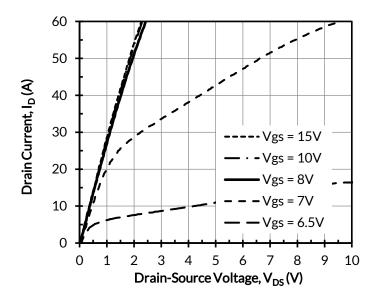
 $^{4.\,}Measured\,with\,the\,switching\,test\,circuit\,in\,Figure\,23.$

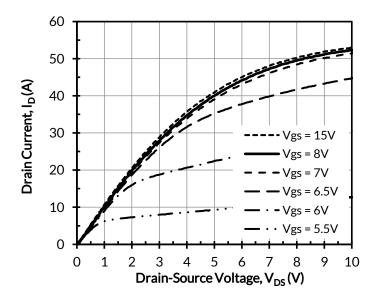
Typical Performance - Dynamic (continued)

Parameter	Symbol	Test Conditions	Value			- Units
	Symbol	rest Conditions	Min	Тур	Max	Offics
Turn-on delay time	t _{d(on)}	Notes 5 and 6.		12		
Rise time	t _r	V _{DS} =400V, I _D =25A, Gate		23		ns
Turn-off delay time	t _{d(off)}	Driver = $0V$ to + $15V$, Turn-on $R_{G,EXT} = 1\Omega$,		42		- ns
Fall time	t _f	Turn-off $R_{G,EXT} = 5\Omega$,		5.6		
Turn-on energy including R _S energy	E _{ON}	inductive Load,		128		
Turn-off energy including R _S energy	E _{OFF}	FWD: same device with V_{GS} = 0V and R_G = 5 Ω , RC		18		
Total switching energy	E _{TOTAL}	snubber: $R_S=15\Omega$ and		146		μЈ
Snubber R _S energy during turn-on	E _{RS_ON}	C _S =68pF,		0.5		
Snubber R _S energy during turn-off	E _{RS_OFF}	T _J =25°C		0.7		
Turn-on delay time	t _{d(on)}	Notes 5 and 6.		12		
Rise time	t _r	V _{DS} =400V, I _D =25A, Gate		23		ns
Turn-off delay time	t _{d(off)}	Driver =0V to +15V, Turn-on $R_{G,EXT} = 1\Omega$,		43		115
Fall time	t _f	Turn-off $R_{G,EXT} = 102$,		8		
Turn-on energy including R_{S} energy	E _{ON}	inductive Load, FWD: same device with V_{GS} = 0V and R_G = 5Ω , RC snubber: R_S =15 Ω and C_S =68pF, T_J =150°C		140		
Turn-off energy including R_S energy	E _{OFF}			21		
Total switching energy	E _{TOTAL}			161		μЈ
Snubber R _S energy during turn-on	E _{RS_ON}			0.5		
Snubber R _S energy during turn-off	E _{RS_OFF}			0.6		

^{5.} Measured with the switching test circuit in Figure 24.

^{6.} In this datasheet, all the switching energies (turn-on energy, turn-off energy and total energy) presented in the tables and Figures include the device RC snubber energy losses.




Typical Performance Diagrams

60 50 Drain Current, I_D (A) 40 30 Vgs = 15V Vgs = 8V 20 Vgs = 7V **-** Vgs = 6.5V 10 Vgs = 6V 0 1 2 3 5 10 Drain-Source Voltage, $V_{DS}(V)$

Figure 1. Typical output characteristics at T_J = - 55°C, tp < 250 μ s

Figure 2. Typical output characteristics at $T_J = 25$ °C, tp < 250μ s

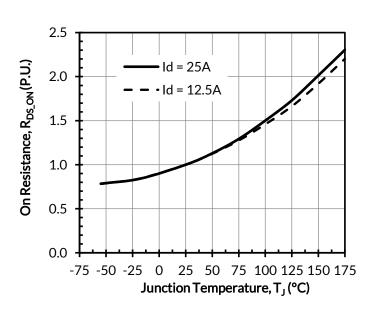
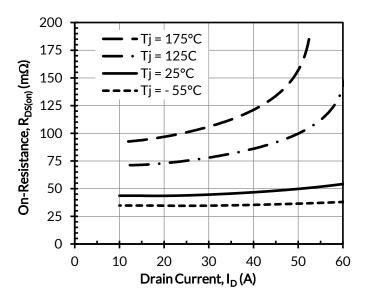
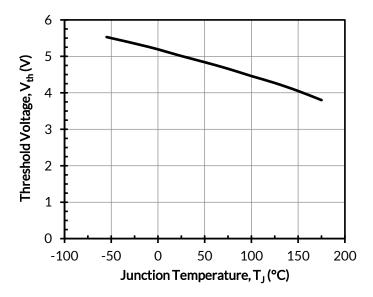


Figure 3. Typical output characteristics at T_J = 175°C, tp < 250 μ s

Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V





Tj = -55°C Tj = 25°C Tj = 175°C Drain Current, I_D (A) Gate-Source Voltage, $V_{GS}(V)$

Figure 5. Typical drain-source on-resistances at V_{GS} = 12V

Figure 6. Typical transfer characteristics at V_{DS} = 5V

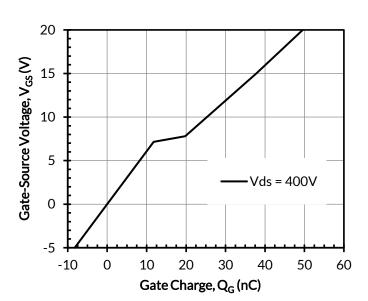


Figure 7. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 10mA

Figure 8. Typical gate charge at I_D = 25A

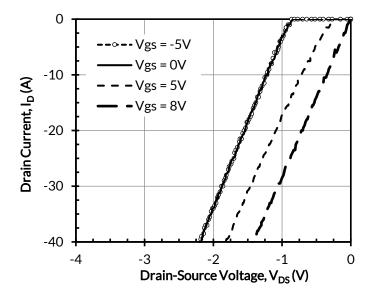


Figure 9. 3rd quadrant characteristics at $T_J = -55$ °C

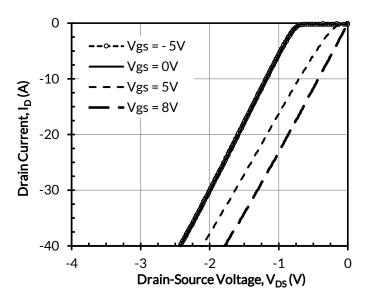


Figure 10. 3rd quadrant characteristics at T_J = 25°C

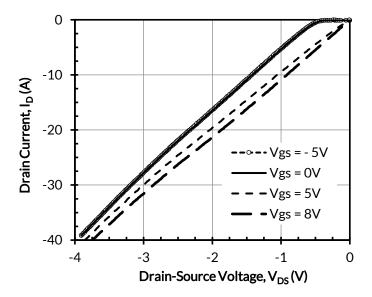


Figure 11. 3rd quadrant characteristics at $T_J = 175$ °C

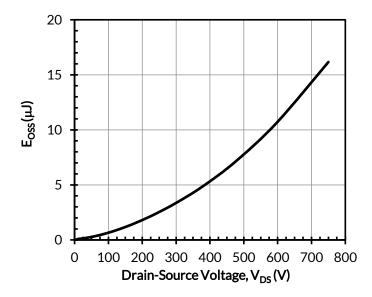
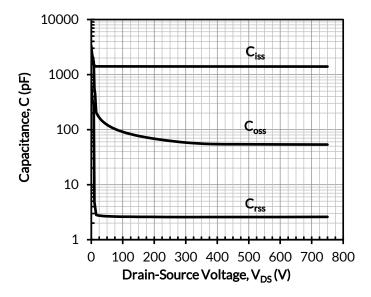


Figure 12. Typical stored energy in C_{OSS} at V_{GS} = 0V



40 35 30 20 15 10 -75 -50 -25 0 25 50 75 100 125 150 175 Case Temperature, T_c (°C)

Figure 13. Typical capacitances at f = 100kHz and $V_{GS} = 0V$

Figure 14. DC drain current derating

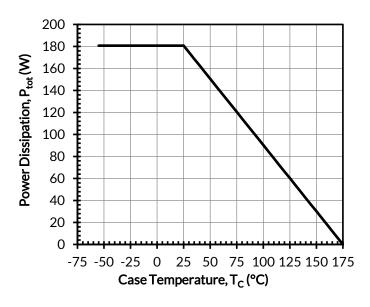


Figure 15. Total power dissipation

Figure 16. Maximum transient thermal impedance

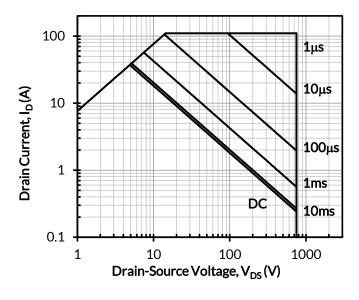


Figure 17. Safe operation area at T_C = 25°C, D = 0, Parameter t_p

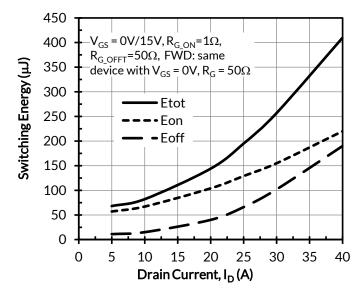


Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

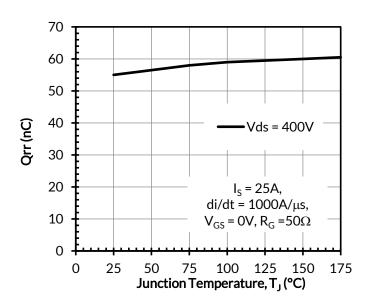


Figure 18. Reverse recovery charge Qrr vs. junction temperature

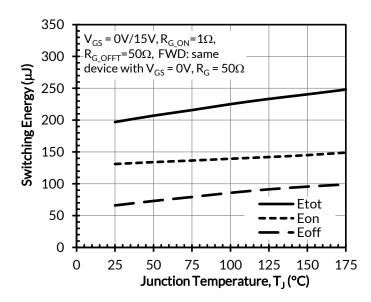


Figure 20. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_{D} = 25A

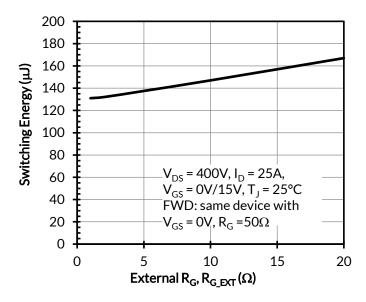


Figure 21. Clamped inductive switching turn-on energy vs. $R_{G,EXT\ ON}$

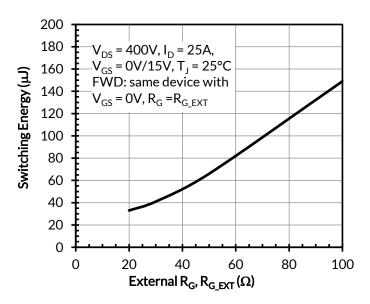


Figure 22. Clamped inductive switching turn-off energy vs. $R_{G,EXT\ OFF}$

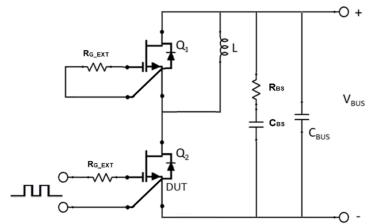


Figure 23. Schematic of the half-bridge mode switching test circuit. Note, a bus RC snubber (R_{BS} = 2.5 Ω , C_{BS} =100nF) is used to reduce the power loop high frequency oscillations.

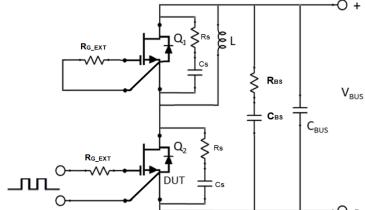


Figure 24. Schematic of the half-bridge mode switching test circuit with device RC snubbers (R_s = 10 Ω , C_s = 68pF) and a bus RC snubber (R_{BS} = 2.5 Ω , C_{BS} =100nF).