

$750V-58m\Omega$ SiC FET

Rev. B, March 2022

DATASHEET

UJ4C075060B7S

Part Number	Package	Marking
UJ4C075060B7S	D ² PAK-7L	UJ4C075060B7S

Description

The UJ4C075060B7S is a 750V, $58m\Omega$ G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the D²PAK-7L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance $R_{DS(on)}$: 58m Ω (typ)
- Operating temperature: 175°C (max)
- Excellent reverse recovery: Q_{rr} = 70nC
- Low body diode V_{FSD}: 1.31V
- Low gate charge: Q_G = 37.8nC
- Threshold voltage V_{G(th)}: 4.8V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected, HBM class 2
- D²PAK-7L package for faster switching, clean gate waveforms

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V _{DS}		750	V
Cata aquiraquialtaga	V	DC	-20 to +20	V
Gate-source voltage	V_{GS}	AC (f > 1Hz)	-25 to +25	V
Continue durin control 1	1	T _C = 25°C	25.8	А
Continuous drain current ¹	ID	T _C = 100°C	19	А
Pulsed drain current ²	I _{DM}	T _C = 25°C	76	А
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =1.8A	24.3	mJ
SiC FET dv/dt ruggedness	dv/dt	$V_{DS} \le 500V$	200	V/ns
Power dissipation	P _{tot}	T _C = 25°C	128	W
Maximum junction temperature	T _{J,max}		175	°C
Operating and storage temperature	TJ, T _{STG}		-55 to 175	°C
Reflow soldering temperature	T_{solder}	reflow MSL 1	245	°C

1. Limited by $T_{\mbox{\tiny J,max}}$

2. Pulse width t_p limited by $T_{J,max}$

3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			Units
			Min	Тур	Max	Units
Thermal resistance, junction-to-case	$R_{\theta JC}$			0.9	1.17	°C/W

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Cumphal	Test Conditions		11.20.		
	Symbol		Min	Тур	Max	- Units
Drain-source breakdown voltage	BV _{DS}	V_{GS} =0V, I_{D} =1mA	750			V
Total drain leakage current		V _{DS} =750V, V _{GS} =0V, T _J =25°C		0.7	40	
	I _{DSS}	V _{DS} =750V, V _{GS} =0V, T _J =175°C		15		μA
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C, V _{GS} =-20V / +20V		4.7	±20	μA
Drain-source on-resistance	R _{DS(on)}	V _{GS} =12V, I _D =20A, T _J =25°C		58	74	
		V _{GS} =12V, I _D =20A, T _J =125°C		106		mΩ
		V _{GS} =12V, I _D =20A, T _J =175°C		147		
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =10mA	4	4.8	6	V
Gate resistance	R _G	f=1MHz, open drain		4.5		Ω

Typical Performance - Reverse Diode

Parameter	Symbol	Test Conditions		Units		
			Min	Тур	Max	Units
Diode continuous forward current ¹	ا _s	T _C =25°C			25.8	А
Diode pulse current ²	I _{S,pulse}	T _C =25°C			76	А
Forward voltage	V _{FSD}	V _{GS} =0V, I _F =10A, T _J =25°C		1.31	1.75	v
		V _{GS} =0V, I _F =10A, T _J =175°C		1.8		
Reverse recovery charge	Q _{rr}	V_{R} =400V, I_{F} =20A, V_{GS} =0V, $R_{G_{EXT}}$ =20 Ω		70		nC
Reverse recovery time	t _{rr}	di/dt=1200A/µs, T_=25°C		11		ns
Reverse recovery charge	Q _{rr}	V_R =400V, I_F =20A, V_{GS} =0V, R_{G_EXT} =20 Ω		77		nC
Reverse recovery time	t _{rr}	di/dt=1200/µs, T_=150°C		13		ns

Typical Performance - Dynamic

Parameter	Symbol	Test Conditions	Value			Units
Parameter			Min	Тур	Max	Units
Input capacitance	C _{iss}	V _{DS} =400V, V _{GS} =0V		1420		
Output capacitance	C _{oss}	v_{DS} = 400 v, v_{GS} = 0 v = f=100kHz		41		pF
Reverse transfer capacitance	C _{rss}	1-100KHZ		2.7		
Effective output capacitance, energy related	C _{oss(er)}	V_{DS} =0V to 400V, V_{GS} =0V		50		pF
Effective output capacitance, time related	C _{oss(tr)}	V_{DS} =0V to 400V, V_{GS} =0V		94		pF
C _{OSS} stored energy	E _{oss}	V _{DS} =400V, V _{GS} =0V		4		μJ
Total gate charge	Q _G	– V _{DS} =400V, I _D =20A, –		37.8		
Gate-drain charge	Q_{GD}	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 20 \text{ A},$ - $V_{GS} = 0 \text{ V to } 15 \text{ V}$		8		nC
Gate-source charge	Q _{GS}	VGS - 0V 10 15 V		11.8		
Turn-on delay time	t _{d(on)}	Note 4,		15		
Rise time	t _r	V _{DS} =400V, I _D =20A, Gate		21		
Turn-off delay time	$t_{d(off)}$	Driver =0V to +15V, Turn-on $R_{G,EXT}$ =1 Ω ,		75		ns
Fall time	t _f	Turn-off $R_{G,EXT} = 20\Omega$		11		
Turn-on energy	E _{ON}	Inductive Load, FWD: same device with		132		
Turn-off energy	E _{OFF}	$V_{GS} = 0V, R_G = 20\Omega,$		29		μJ
Total switching energy	E _{TOTAL}	TJ=25°C		161		
Turn-on delay time	t _{d(on)}	Note 4,		12		
Rise time	t _r	V _{DS} =400V, I _D =20A, Gate		23		1
Turn-off delay time	$t_{d(off)}$	Driver =0V to +15V, Turn-on $R_{G,EXT}$ =1 Ω ,		83		ns
Fall time	t _f	Turn-off $R_{G,EXT}$ = 20 Ω		12		1
Turn-on energy	E _{ON}	Inductive Load,		148		
Turn-off energy	E _{OFF}	FWD: same device with $V_{GS} = 0V, R_G = 20\Omega,$ $T_J = 150^{\circ}C$		37		μJ
Total switching energy	E _{TOTAL}			185		1

4. Measured with the half-bridge mode switching test circuit in Figure 23.

Typical Performance - Dynamic (continued)

Parameter	Symbol	Test Conditions	Value			Units
	Symbol		Min	Тур	Max	Units
Turn-on delay time	t _{d(on)}	Notes 5 and 6, V_{DS} =400V, I _D =20A, Gate		10		
Rise time	t _r			22		nc
Turn-off delay time	t _{d(off)}	Driver =0V to +15V, Turn-on $R_{G,EXT} = 1\Omega$,		32		ns
Fall time	t _f	Turn-off $R_{G,EXT} = 5\Omega$,		8		
Turn-on energy including R_S energy	E _{ON}	inductive Load,		96		
Turn-off energy including R _s energy	E _{OFF}	FWD: same device with V_{GS} = 0V and $R_G = 5\Omega$, RC		36		
Total switching energy	E _{TOTAL}	snubber: $R_s = 10\Omega$ and		132		μJ
Snubber R _s energy during turn-on	E _{RS_ON}	C _S =100pF,		0.7		-
Snubber R _s energy during turn-off	E _{RS_OFF}	TT		1		1
Furn-on delay time	t _{d(on)}	Notes 5 and 6.		14		
Rise time	t _r	V _{DS} =400V, I _D =20A, Gate		23		
Turn-off delay time	t _{d(off)}	Driver =0V to +15V, Turn-on $R_{G,EXT}$ = 1 Ω ,		45		ns
Fall time	t _f	Turn-off $R_{G,EXT} = 5\Omega$,		10		-
Furn-on energy including R _s energy	E _{ON}	inductive Load,		140		
Turn-off energy including R _s energy	E _{OFF}	FWD: same device with V_{GS} = 0V and $R_G = 5\Omega$, RC snubber: $R_S = 10\Omega$ and $C_S = 100pF$, $T_J = 150^{\circ}C$		25		-
Fotal switching energy	E _{TOTAL}			165		μJ
Snubber R _s energy during turn-on	E _{RS_ON}			0.7		
Snubber R _s energy during turn-off	E _{RS_OFF}			1		

5. Measured with the chopper mode switching test circuit in Figure 24.

6. In this datasheet, all the switching energies (turn-on energy, turn-off energy and total energy) presented in the tables and Figures include the device RC snubber energy losses.

Typical Performance Diagrams

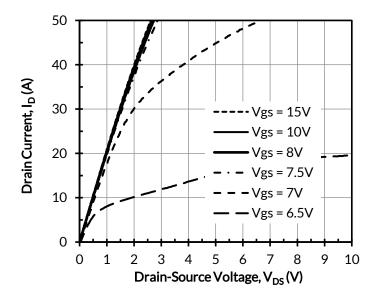
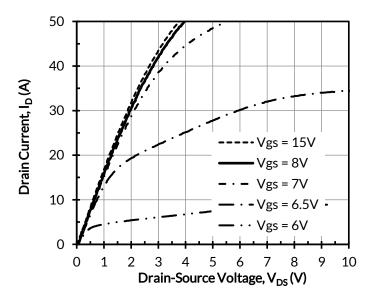



Figure 1. Typical output characteristics at T $_{\rm J}$ = - 55°C, tp < 250 μs

Contact Sales Learn

More

Figure 2. Typical output characteristics at T_J = 25°C, tp < 250 μ s

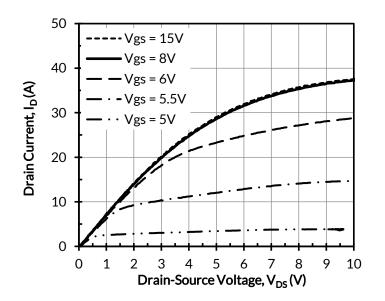


Figure 3. Typical output characteristics at T $_{\rm J}$ = 175°C, tp < 250 μs

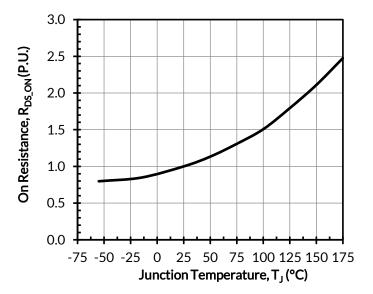


Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_D = 20A

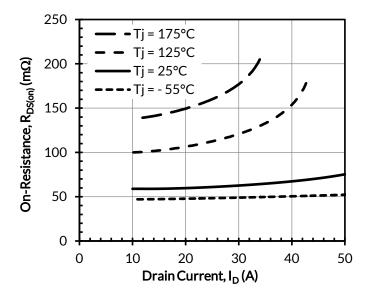
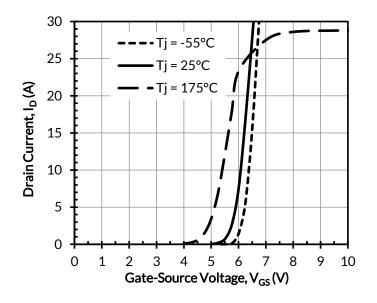



Figure 5. Typical drain-source on-resistances at V_{GS} = 12V

Spice Models

Contact Sales Learn More

Buy Online

FET-Jet Calculator

Figure 6. Typical transfer characteristics at V_{DS} = 5V

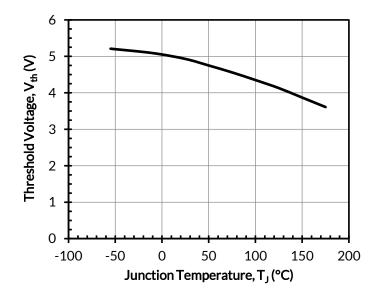


Figure 7. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 10mA

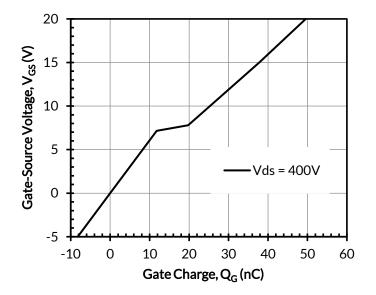


Figure 8. Typical gate charge at I_D = 20A

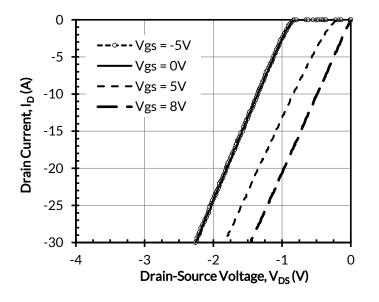


Figure 9. 3rd quadrant characteristics at $T_J = -55^{\circ}C$

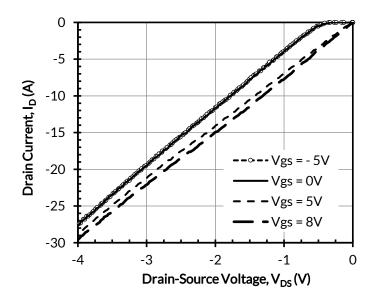
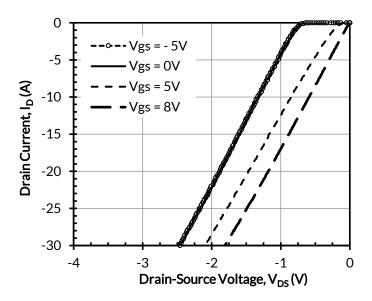



Figure 11. 3rd quadrant characteristics at T_J = 175°C

Spice Models

Contact Sales Learn More

Buy Online

FET-Jet Calculator

Figure 10. 3rd quadrant characteristics at $T_J = 25^{\circ}C$

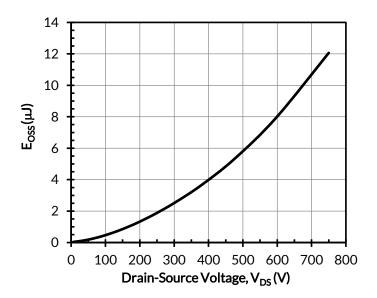


Figure 12. Typical stored energy in C_{OSS} at V_{GS} = 0V

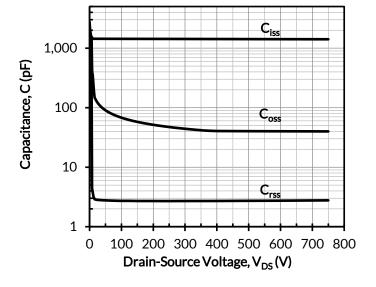
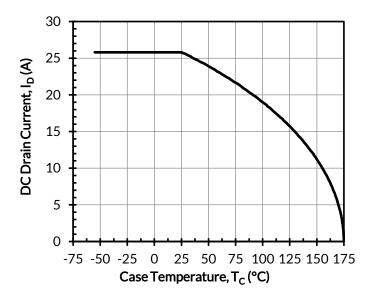



Figure 13. Typical capacitances at f = 100kHz and V_{GS} = 0V

Spice Models

Contact

Learn

More

Buy Online

FET-Jet

Calculator

Figure 14. DC drain current derating

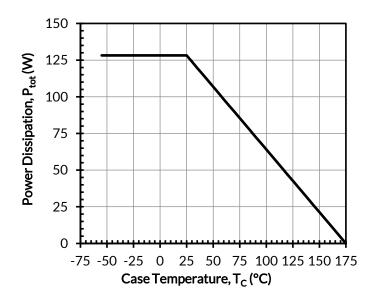


Figure 15. Total power dissipation

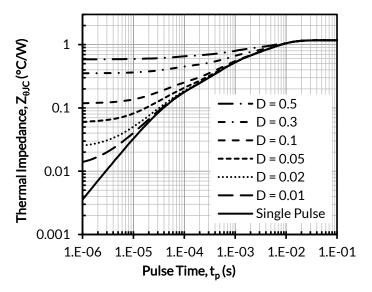


Figure 16. Maximum transient thermal impedance

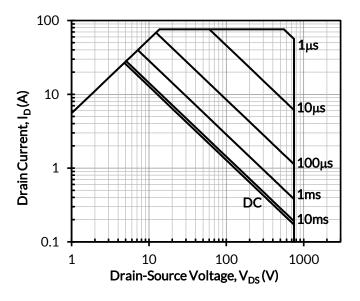



Figure 17. Safe operation area at $T_C = 25^{\circ}C$, D = 0, Parameter t_p

Spice Models

Contact

Sales

Learn

More

Buy Online

FET-Jet

Calculator

Figure 18. Reverse recovery charge Qrr vs. junction temperature

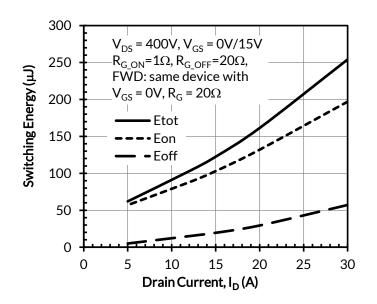


Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

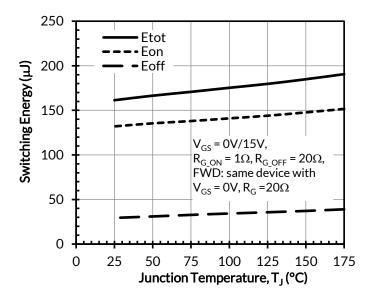


Figure 20. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_D = 20A

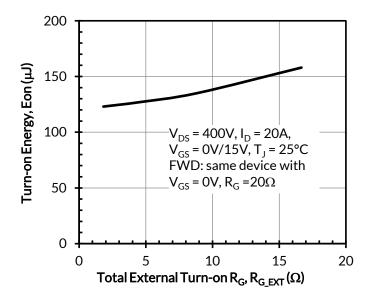


Figure 21. Clamped inductive switching turn-on energy vs. R_{G,EXT ON}

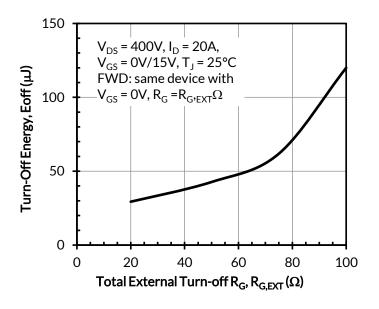


Figure 22. Clamped inductive switching turn-off energy vs. R_{G,EXT OFF}

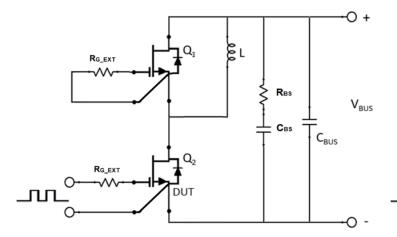


Figure 23. Schematic of the half-bridge mode switching

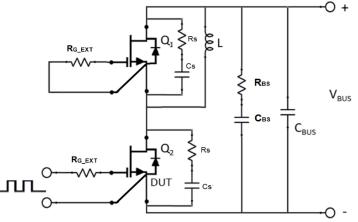


Figure 24. Schematic of the half-bridge mode switching test circuit with device RC snubbers ($R_s = 10\Omega$, $C_s =$ 95pF) and a bus RC snubber (R_{BS} = 2.5 Ω , C_{BS} =100nF).

test circuit. Note, a bus RC snubber (R_{BS} = 2.5 Ω , C_{BS}=100nF) is used to reduce the power loop high