

UJ4C075060K3S

Part Number	Package	Marking
UJ4C075060K3S	TO-247-3L	UJ4C075060K3S

750V-58m Ω SiC FET

Rev. A. October 2020

Description

The UJ4C075060K3S is a 750V, $58m\Omega$ G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-3L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance $R_{DS(on)}$: $58m\Omega$ (typ)
- Operating temperature: 175°C (max)
- ◆ Excellent reverse recovery: Q_{rr} = 52nC
- ◆ Low body diode V_{FSD}: 1.31V
- ◆ Low gate charge: Q_G = 37.8nC
- ◆ Threshold voltage V_{G(th)}: 4.8V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected, HBM class 2

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		750	V
Gate-source voltage	V_{GS}	DC	-20 to +20	V
Continuous dusis summent 1		T _C = 25°C	28	Α
Continuous drain current ¹	I _D	T _C = 100°C	20.6	А
Pulsed drain current ²	I _{DM}	T _C = 25°C	62	А
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =1.8A	24.3	mJ
Power dissipation	P _{tot}	T _C = 25°C	155	W
Maximum junction temperature	$T_{J,max}$		175	°C
Operating and storage temperature	T_J, T_{STG}		-55 to 175	°C
Max. lead temperature for soldering, 1/8" from case for 5 seconds	TL		250	°C

- 1. Limited by $T_{J,max}$
- 2. Pulse width t_p limited by $T_{J,max}$
- 3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			Limita
			Min	Тур	Max	Units
Thermal resistance, junction-to-case	$R_{ heta$ JC			0.75	0.97	°C/W

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions		Units		
			Min	Тур	Max	Offics
Drain-source breakdown voltage	BV _{DS}	V_{GS} =0V, I_D =1mA	750			V
Tabal darin la dia a samurah		V _{DS} =750V, V _{GS} =0V, T _J =25°C		0.7	40	- μΑ
Total drain leakage current	I _{DSS}	V _{DS} =750V, V _{GS} =0V, T _J =175°C		15		
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C, V _{GS} =-20V / +20V		4.7	±20	μΑ
Drain-source on-resistance	R _{DS(on)}	V _{GS} =12V, I _D =20A, T _J =25°C		58	74	
		V _{GS} =12V, I _D =20A, T _J =125°C		106		mΩ
		V _{GS} =12V, I _D =20A, T _J =175°C		147		
Gate threshold voltage	$V_{G(th)}$	V_{DS} =5V, I_D =10mA	4	4.8	6	V
Gate resistance	R_{G}	f=1MHz, open drain		4.5		Ω

Typical Performance - Reverse Diode

Parameter	Symbol	Test Conditions		Units		
Parameter			Min	Тур	Max	Units
Diode continuous forward current ¹	I _S	T _C =25°C			28	Α
Diode pulse current ²	I _{S,pulse}	T _C =25°C			62	Α
Forward voltage	V_{FSD}	V _{GS} =0V, I _F =10A, T _J =25°C		1.31	1.75	V
		V _{GS} =0V, I _F =10A, T _J =175°C		1.8		
Reverse recovery charge	Q_{rr}	V_R =400V, I_F =20A, V_{GS} =0V, R_{G_EXT} =20 Ω		52		nC
Reverse recovery time	t _{rr}	di/dt=1060A/μs, Τ _J =25°C		16		ns
Reverse recovery charge	Q _{rr}	V_R =400V, I_F =20A, V_{GS} =0V, R_{G_EXT} =20 Ω		58		nC
Reverse recovery time	t _{rr}	di/dt=1060A/μs, Τ _J =150°C		19		ns

Typical Performance - Dynamic

Devementor	Symbol	Test Conditions	Value			Units
Parameter	Symbol	rest Conditions	Min	Тур	Max	Ullits
Input capacitance	C _{iss}	V _{DS} =100V, V _{GS} =0V - f=100kHz		1422		
Output capacitance	C _{oss}			68		pF
Reverse transfer capacitance	C_{rss}	1-100KHZ		2.7		
Effective output capacitance, energy related	C _{oss(er)}	V_{DS} =0V to 400V, V_{GS} =0V		50		pF
Effective output capacitance, time related	C _{oss(tr)}	V_{DS} =0V to 400V, V_{GS} =0V		94		pF
C _{OSS} stored energy	E _{oss}	V _{DS} =400V, V _{GS} =0V		4		μJ
Total gate charge	Q_{G}	- V _{DS} =400V, I _D =20A, -		37.8		
Gate-drain charge	Q_{GD}	$V_{DS} = 400 \text{ V}, V_{D} = 20 \text{ A},$ $V_{GS} = 0 \text{ V to } 15 \text{ V}$		8		nC
Gate-source charge	Q_{GS}	V _{GS} – OV to 13 V		11.8		
Turn-on delay time	$t_{d(on)}$	Note 4,		13		
Rise time	t _r	V_{DS} =400V, I_{D} =20A, Gate		29		
Turn-off delay time	t _{d(off)}	Driver =0V to +15V, Turn-on $R_{G,EXT}$ =1 Ω ,		78		ns
Fall time	t _f	Turn-off $R_{G,EXT}$ =20 Ω		13		
Turn-on energy	E _{ON}	Inductive Load, FWD: same device with		168		
Turn-off energy	E _{OFF}	$V_{GS} = 0V, R_G = 20\Omega,$		58		μJ
Total switching energy	E _{TOTAL}	T _J =25°C		226		
Turn-on delay time	t _{d(on)}	Note 4,		13		
Rise time	t _r	V _{DS} =400V, I _D =20A, Gate		31		
Turn-off delay time	t _{d(off)}	Driver = $0V$ to +15V, Turn-on $R_{G,EXT}$ = 1Ω , Turn-off $R_{G,EXT}$ = 20Ω		84		ns
Fall time	t _f			14		
Turn-on energy	E _{ON}	Inductive Load, FWD: same device with		189		
Turn-off energy	E _{OFF}	$V_{GS} = 0V$, $R_G = 20\Omega$, $T_J = 150$ °C		70		μJ
Total switching energy	E _{TOTAL}			259		

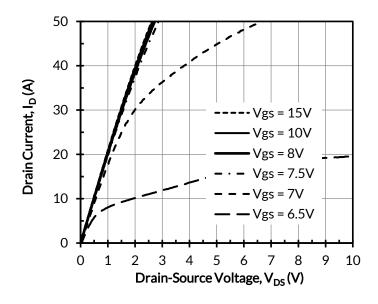
^{4.} Measured with the half-bridge mode switching test circuit in Figure 28.

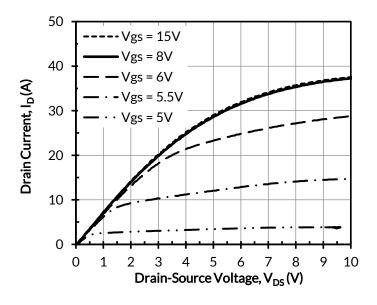
Typical Performance - Dynamic (continued)

Parameter	Symbol	Test Conditions	Value			Units
Parameter	Symbol	rest Conditions	Min	Тур	Max	Units
Turn-on delay time	t _{d(on)}			13		
Rise time	t _r	Note 5,		31		nc
Turn-off delay time	$t_{d(off)}$	V _{DS} =400V, I _D =20A, Gate Driver =0V to +15V,		31		ns
Fall time	t _f	$R_{G,EXT}=1\Omega$, inductive Load,		9		
Turn-on energy including R_S energy	E _{ON}	FWD: same device with V_{GS}		186		
Turn-off energy including R_S energy	E _{OFF}	= 0V and $R_G = 1\Omega$, RC snubber: $R_{S1} = 10\Omega$ and		18		
Total switching energy	E _{TOTAL}	C_{S1} =95pF,		204		μЈ
Snubber R _S energy during turn-on	E _{RS_ON}	T _J =25°C		0.5		
Snubber R _S energy during turn-off	E _{RS_OFF}			0.9		
Turn-on delay time	t _{d(on)}			13		
Rise time	t _r	Note 5,		35		
Turn-off delay time	t _{d(off)}	V _{DS} =400V, I _D =20A, Gate Driver =0V to +15V,		34		ns
Fall time	t _f	$R_{G,EXT}=1\Omega$, inductive Load,		10		
Turn-on energy including R _S energy	E _{ON}	FWD: same device with V _{GS}		210		
Turn-off energy including R _S energy	E _{OFF}	= 0V and $R_G = 1\Omega$, RC snubber: $R_{S1}=10\Omega$ and $C_{S1}=95pF$, $T_J=150^{\circ}C$		24		
Total switching energy	E _{TOTAL}			234		μͿ
Snubber R _S energy during turn-on	E _{RS_ON}			0.5		
Snubber R _S energy during turn-off	E _{RS_OFF}			0.9		
Turn-on delay time	t _{d(on)}	Note 6,		13		
Rise time	t _r	V _{DS} =400V, I _D =20A, Gate		26]
Turn-off delay time	t _{d(off)}	Driver = 0V to +15V,		78		ns
Fall time	t _f	Turn-on $R_{G,EXT} = 1\Omega$,		12		
Turn-on energy	E _{ON}	Turn-off $R_{G,EXT}$ =20 Ω Inductive Load,		142		
Turn-off energy	E _{OFF}	FWD: UJ3D06510TS		56		μJ
Total switching energy	E _{TOTAL}	T _J =25°C		198		
Turn-on delay time	t _{d(on)}	Note 6,		13		
Rise time	t _r	V _{DS} =400V, I _D =20A, Gate		30		
Turn-off delay time	t _{d(off)}	Driver =0V to +15V,		83		ns
Fall time	t _f	Turn off R = 200		15		1
Turn-on energy	E _{ON}	- Turn-off $R_{G,EXT}$ =20Ω - Inductive Load,		162		
Turn-off energy	E _{OFF}	FWD:UJ3D06510TS T _J =150°C		70		_ μJ
Total switching energy	E _{TOTAL}			232		

^{5.} Measured with the chopper mode switching test circuit in Figure 30.

^{6.} Measured with the chopper mode switching test circuit in Figure 29.




Typical Performance Diagrams

50 40 Drain Current, I_D (A) 30 Vgs = 15V 20 Vgs = 8V Vgs = 7V10 Vgs = 6.5V • Vgs = 6V 0 0 1 2 3 10 Drain-Source Voltage, V_{DS} (V)

Figure 1. Typical output characteristics at $T_J = -55$ °C, tp < 250 μ s

Figure 2. Typical output characteristics at $T_J = 25$ °C, $tp < 250\mu s$

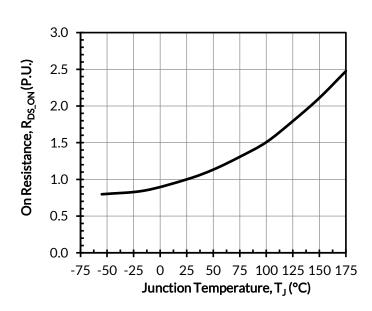
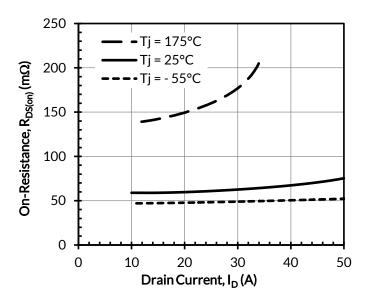
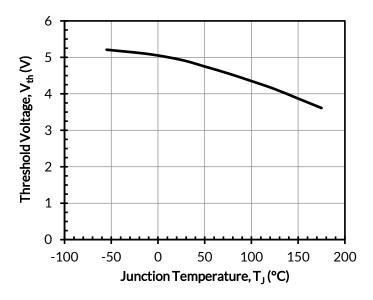


Figure 3. Typical output characteristics at T_J = 175°C, tp < 250 μ s

Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_{D} = 20A





Tj = -55°C Tj = 25°C Tj = 175°C Drain Current, I_D (A) Gate-Source Voltage, V_{GS} (V)

Figure 5. Typical drain-source on-resistances at V_{GS} = 12V

Figure 6. Typical transfer characteristics at V_{DS} = 5V

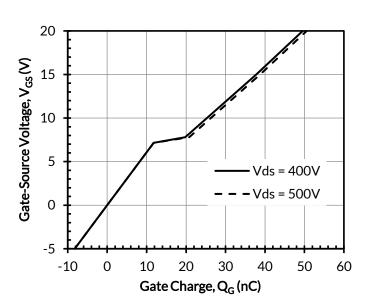


Figure 7. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 10mA

Figure 8. Typical gate charge at $I_D = 20A$

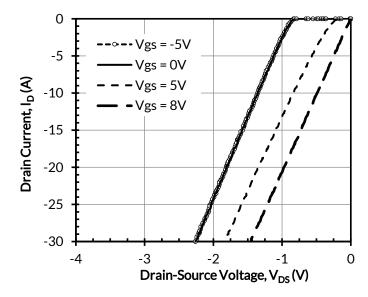


Figure 9. 3rd quadrant characteristics at $T_J = -55$ °C

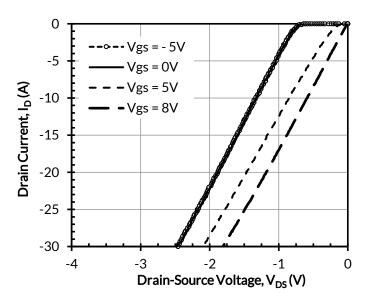


Figure 10. 3rd quadrant characteristics at T_J = 25°C

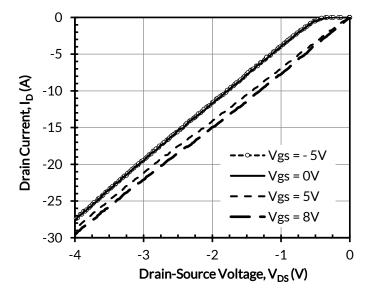


Figure 11. 3rd quadrant characteristics at $T_J = 175$ °C

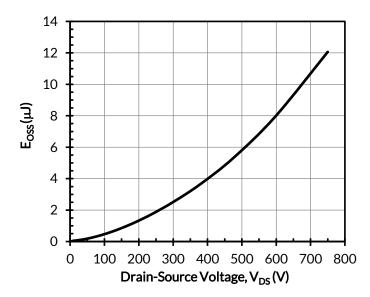
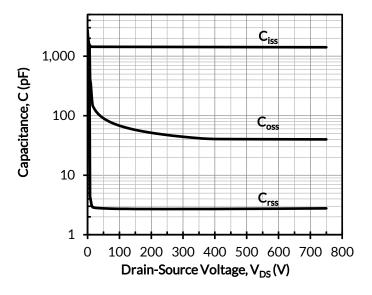
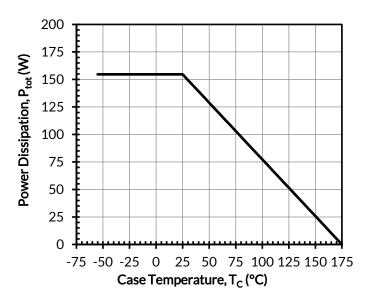


Figure 12. Typical stored energy in C_{OSS} at $V_{GS} = 0V$





35 30 25 20 15 10 5 -75 -50 -25 0 25 50 75 100 125 150 175 Case Temperature, T_C (°C)

Figure 13. Typical capacitances at f = 100kHz and $V_{GS} = 0V$

Figure 14. DC drain current derating

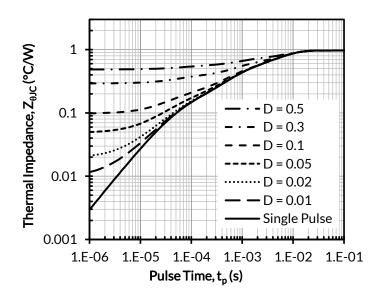


Figure 15. Total power dissipation

Figure 16. Maximum transient thermal impedance

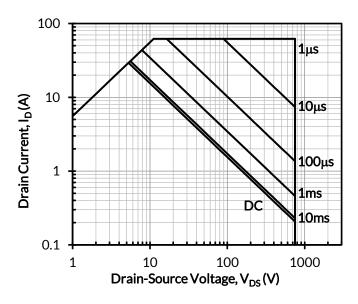


Figure 17. Safe operation area at $T_C = 25$ °C, D = 0, Parameter t_p

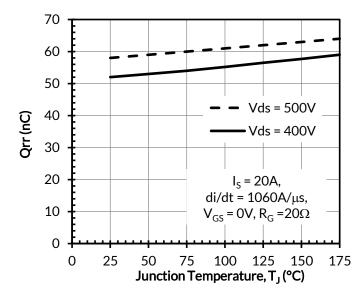


Figure 18. Reverse recovery charge Qrr vs. junction temperature

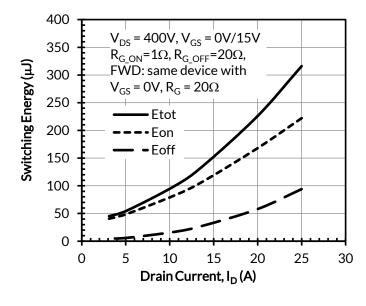


Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

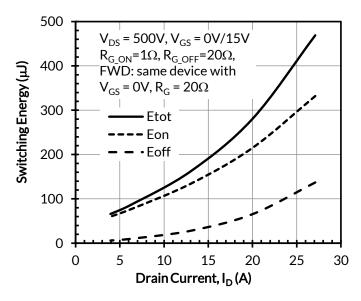
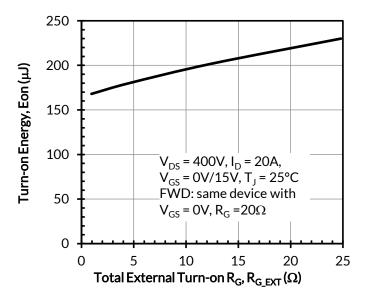
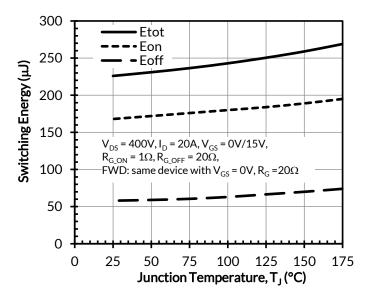


Figure 20. Clamped inductive switching energy vs. drain current at V_{DS} = 500V and T_J = 25°C





200 Turn-Off Energy, Eoff (إلىا) 150 100 $V_{DS} = 400V, I_{D} = 20A,$ $V_{GS} = 0V/15V, T_J = 25^{\circ}C$ 50 FWD: same device with $V_{GS} = 0V, R_G = 20\Omega$ 0 0 20 40 60 80 100 Total External Turn-off R_{G} , $R_{G,EXT}(\Omega)$

Figure 21. Clamped inductive switching turn-on energy vs. $R_{G,EXT\ ON}$

Figure 22. Clamped inductive switching turn-off energy vs. $R_{\text{G,EXT_OFF}}$

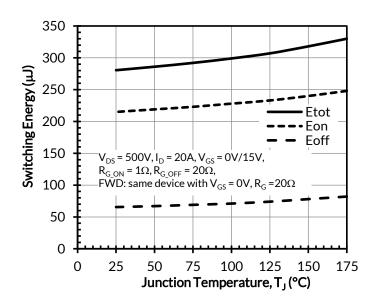
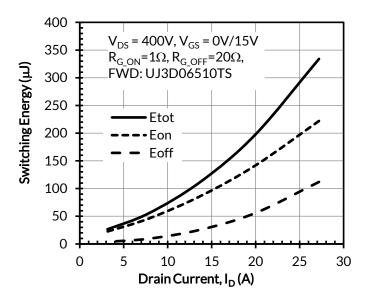
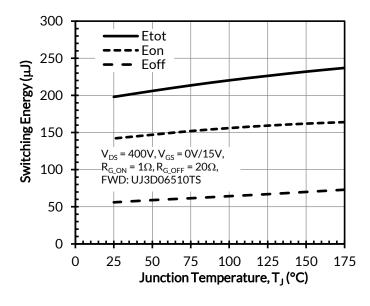


Figure 23. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_{D} = 20A

Figure 24. Clamped inductive switching energy vs. junction temperature at V_{DS} = 500V and I_D = 20A





 $V_{DS} = 500V, V_{GS} = 0V/15V$ $R_{G_ON}=1\Omega$, $R_{G_OFF}=20\Omega$, FWD: UJ3D06510TS Switching Energy (µJ) Etot **Eoff** Drain Current, ID (A)

Figure 24. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

Figure 25. Clamped inductive switching energy vs. drain current at $V_{DS} = 500V$ and $T_J = 25^{\circ}C$

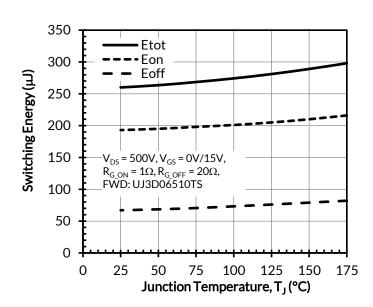


Figure 26. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_{D} = 20A

Figure 27. Clamped inductive switching energy vs. junction temperature at V_{DS} = 500V and I_D = 20A

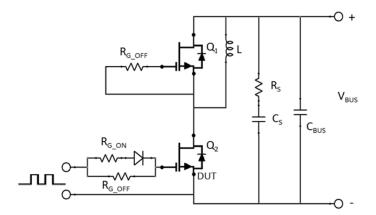


Figure 28. Schematic of the half-bridge mode switching test circuit. Note, a bus RC snubber (R_S = 2.5Ω , C_S =100nF) is used to reduce the power loop high frequency oscillations.

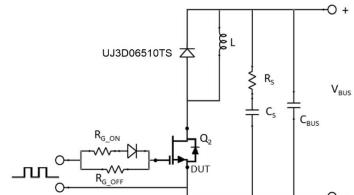


Figure 29. Schematic of the chopper mode switching test circuit. Note, a bus RC snubber (R_S = 2.5 Ω , C_S =100nF) is used to reduce the power loop high frequency oscillations.

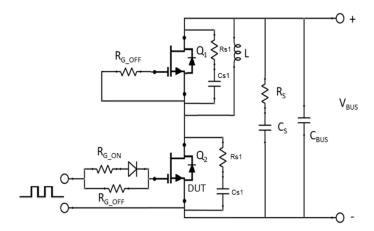


Figure 30. Schematic of the half-bridge mode switching test circuit with device RC snubbers (R_{s1} = 10 Ω , C_{s1} = 95pF) and a bus RC snubber (R_{S} = 2.5 Ω , C_{S} =100nF).