

750V-58mΩ SiC FET

Rev. A. October 2020

DATASHEET

UJ4C075060K4S

Part Number	Package	Marking
UJ4C075060K4S	TO-247-4L	UJ4C075060K4S

Description

The UJ4C075060K4S is a 750V, $58m\Omega$ G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-4L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance R_{DS(on)}: 58mΩ (typ)
- Operating temperature: 175°C (max)
- Excellent reverse recovery: Q_{rr} = 52nC
- Low body diode V_{FSD}: 1.31V
- Low gate charge: Q_G = 37.8nC
- Threshold voltage V_{G(th)}: 4.8V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected, HBM class 2
- TO-247-4L package for faster switching, clean gate waveforms

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V _{DS}		750	V
Gate-source voltage	V _{GS}	DC	-20 to +20	V
Continuous drain current ¹	1	T _C = 25°C	28	А
Continuous drain current	ID	T _C = 100°C	20.6	А
Pulsed drain current ²	I _{DM}	T _C = 25°C	62	А
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =1.8A	24.3	mJ
Power dissipation	P _{tot}	T _C = 25°C	155	W
Maximum junction temperature	$T_{J,max}$		175	°C
Operating and storage temperature	TJ, T _{STG}		-55 to 175	°C
Max. lead temperature for soldering, 1/8" from case for 5 seconds	ΤL		250	°C

1. Limited by $T_{\mbox{\tiny J,max}}$

2. Pulse width t_p limited by $T_{J,max}$

3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Deremeter	Symbol	Test Conditions	Value			Linite
Parameter	Symbol		Min	Тур	Max	Units
Thermal resistance, junction-to-case	$R_{ ext{ heta}JC}$			0.75	0.97	°C/W

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions		11.20.		
			Min	Тур	Max	- Units
Drain-source breakdown voltage	BV _{DS}	V_{GS} =0V, I_{D} =1mA	750			V
Total drain leakage current		V _{DS} =750V, V _{GS} =0V, T _J =25°C		0.7	40	- μΑ
	I _{DSS}	V _{DS} =750V, V _{GS} =0V, T _J =175°C		15		
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C, V _{GS} =-20V / +20V		4.7	±20	μA
Drain-source on-resistance	R _{DS(on)}	V _{GS} =12V, I _D =20A, T _J =25°C		58	74	
		V _{GS} =12V, I _D =20A, T _J =125°C		106		mΩ
		V _{GS} =12V, I _D =20A, T _J =175°C		147		
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =10mA	4	4.8	6	V
Gate resistance	R _G	f=1MHz, open drain		4.5		Ω

Typical Performance - Reverse Diode

Parameter	Symbol	Test Conditions		- Units		
			Min	Тур	Max	Units
Diode continuous forward current ¹	ls	T _C =25°C			28	А
Diode pulse current ²	I _{S,pulse}	T _C =25°C			62	А
Forward voltage	V_{FSD}	V _{GS} =0V, I _F =10A, T _J =25°C		1.31	1.75	v
		V _{GS} =0V, I _F =10A, T _J =175°C		1.8		
Reverse recovery charge	Q _{rr}	V_R =400V, I_F =20A, V_{GS} =0V, R_{G_EXT} =20 Ω		52		nC
Reverse recovery time	t _{rr}	di/dt=1060A/μs, Τ _J =25°C		16		ns
Reverse recovery charge	Q _{rr}	V_R =400V, I_F =20A, V_{GS} =0V, R_{G_EXT} =20 Ω		58		nC
Reverse recovery time	t _{rr}	di/dt=1060A/µs, T_=150°C		19		ns

Typical Performance - Dynamic

Parameter	Symbol	Test Conditions	Value			Linte
Parameter			Min	Тур	Max	- Units
Input capacitance	C _{iss}	V _{DS} =100V, V _{GS} =0V		1422		
Output capacitance	C _{oss}	$v_{DS} = 100 \text{ V}, v_{GS} = 0 \text{ V}$ = f=100kHz		68		pF
Reverse transfer capacitance	C _{rss}	1-100K12		2.7		
Effective output capacitance, energy related	C _{oss(er)}	$V_{DS}=0V$ to 400V, $V_{GS}=0V$		50		pF
Effective output capacitance, time related	C _{oss(tr)}	V_{DS} =0V to 400V, V_{GS} =0V		94		pF
C _{OSS} stored energy	E _{oss}	V _{DS} =400V, V _{GS} =0V		4		μJ
Total gate charge	Q _G	- V _{DS} =400V, I _D =20A, -		37.8		
Gate-drain charge	Q_{GD}	$V_{DS} = 400 \text{ V}, \text{ I}_D = 20 \text{ A},$ $V_{GS} = 0 \text{ V to } 15 \text{ V}$		8		nC
Gate-source charge	Q _{GS}	•65 ••••••••••		11.8		
Turn-on delay time	t _{d(on)}	Note 4,		12		
Rise time	t _r	V_{DS} =400V, I_{D} =20A, Gate		19		nc
Turn-off delay time	t _{d(off)}	Driver =0V to +15V, Turn-on $R_{G,EXT}$ =1 Ω ,		78		– ns
Fall time	t _f	Turn-off $R_{G,EXT}$ =20 Ω		12		
Turn-on energy	E _{ON}	Inductive Load, FWD: same device with		126		
Turn-off energy	E _{OFF}	$V_{GS} = 0V, R_G = 20\Omega,$		37		μ.
Total switching energy	E _{TOTAL}	T _J =25°C		163		
Turn-on delay time	t _{d(on)}	Note 4,		12		
Rise time	t _r	V _{DS} =400V, I _D =20A, Gate		21]
Turn-off delay time	t _{d(off)}	Driver =0V to +15V, Turn-on $R_{G,EXT}$ =1 Ω , Turn-off $R_{G,EXT}$ =20 Ω		83		ns
Fall time	t _f			14]
Turn-on energy	E _{ON}	Inductive Load, FWD: same device with $V_{GS} = 0V, R_G = 20\Omega,$ $T_J = 150^{\circ}C$		151		
Turn-off energy	E _{OFF}			50		μJ
Total switching energy	E _{TOTAL}			201]

4. Measured with the half-bridge mode switching test circuit in Figure 28.

Typical Performance - Dynamic (continued)

Deveneter	Completed	Toot Conditions	Value			1 Inter-
Parameter	Symbol	Test Conditions –	Min	Тур	Max	Units
Turn-on delay time	t _{d(on)}	Note 5,		12		
Rise time	t _r			22		
Turn-off delay time	t _{d(off)}	V _{DS} =400V, I _D =20A, Gate Driver =0V to +15V,		31		- ns
Fall time	t _f	$R_{G,EXT} = 1\Omega$, inductive Load,		9		
Turn-on energy including R _s energy	E _{ON}	FWD: same device with V_{GS}		142		
Turn-off energy including R_S energy	E _{OFF}	= 0V and $R_G = 1\Omega$, RC snubber: $R_{S1}=10\Omega$ and		17		
Total switching energy	E _{TOTAL}	$C_{s1} = 95 pF,$		159		μJ
Snubber R _s energy during turn-on	E _{RS_ON}	T_=25°C		0.7		
Snubber R _s energy during turn-off	E _{RS_OFF}			1		
Turn-on delay time	t _{d(on)}			12		
Rise time	t _r	Note 5,		25		- ns
Turn-off delay time	t _{d(off)}	V_{DS} =400V, I_D =20A, Gate		35		
Fall time	t _f	- Driver =0V to +15V, $R_{G,EXT}$ =1 Ω , inductive Load,		9		
Turn-on energy including R _s energy	E _{ON}	FWD: same device with V_{GS}		153		
Turn-off energy including R _s energy	E _{OFF}	= 0V and $R_G = 1\Omega$, RC snubber: $R_{S1}=10\Omega$ and		18		
Total switching energy	E _{TOTAL}	$C_{s1} = 95 pF,$		171		μJ
Snubber R _s energy during turn-on	E _{RS_ON}	T _J =150°C		0.7		
Snubber R _s energy during turn-off	E _{RS_OFF}			1		
Turn-on delay time	t _{d(on)}	Note 6,		12		
Rise time	t _r	V _{DS} =400V, I _D =20A, Gate		18		
Turn-off delay time	t _{d(off)}	Driver = 0V to +15V,		78		ns
Fall time	t _f	Turn-on $R_{G,EXT} = 1\Omega$,		12		
Turn-on energy	E _{ON}	$- Turn-off R_{G,EXT}=20\Omega$ $- Inductive Load,$		90		+
Turn-off energy	E _{OFF}	FWD: UJ3D06510TS		37		μJ
Total switching energy	E _{TOTAL}	T_=25°C		127		
Turn-on delay time	t _{d(on)}	Note 6,		12		ns
Rise time	t _r	V _{DS} =400V, I _D =20A, Gate		19		
Turn-off delay time	t _{d(off)}	Driver =0V to +15V, Turn-on $R_{G,EXT}$ =1 Ω ,		84		
Fall time	t _f			15		1
Turn-on energy	E _{ON}	$\begin{array}{c c} & \text{Turn-off } R_{G,EXT} = 20\Omega & \\ & \text{Inductive Load,} & \\ & \text{FWD:} UJ3D06510TS & \\ & & T_{J} = 150^{\circ}C & \end{array}$		104		
Turn-off energy	E _{OFF}			49		μJ
Total switching energy	E _{TOTAL}			153		

5. Measured with the chopper mode switching test circuit in Figure 30.

6. Measured with the chopper mode switching test circuit in Figure 29.

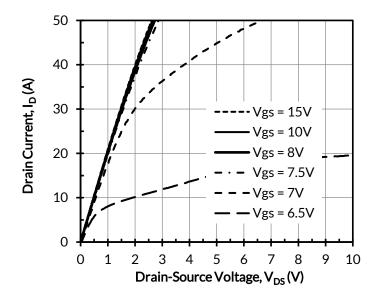
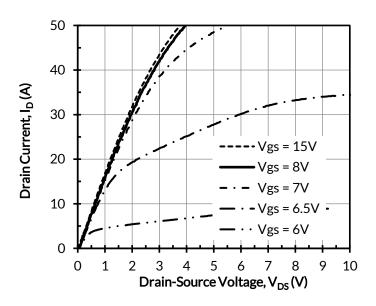



Figure 1. Typical output characteristics at T $_{\rm J}$ = - 55°C, tp < 250 μs

Spice Models

Buy Online Contact Sales Learn

More

Related Devices

Figure 2. Typical output characteristics at T $_{\rm J}$ = 25°C, tp < 250 μs

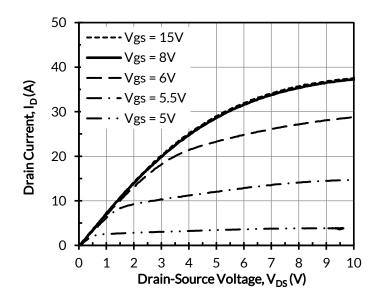


Figure 3. Typical output characteristics at T $_{\rm J}$ = 175°C, tp < 250 μs

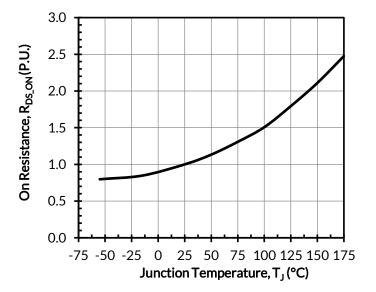


Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_D = 20A

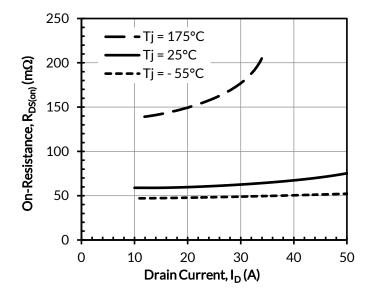


Figure 5. Typical drain-source on-resistances at V_{GS} = 12V

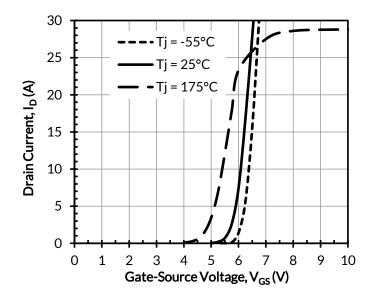


Figure 6. Typical transfer characteristics at V_{DS} = 5V

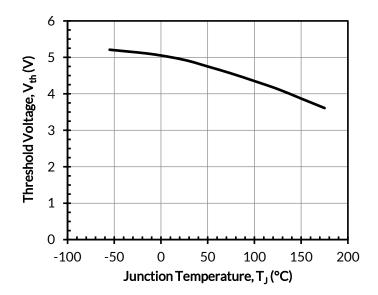


Figure 7. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 10mA

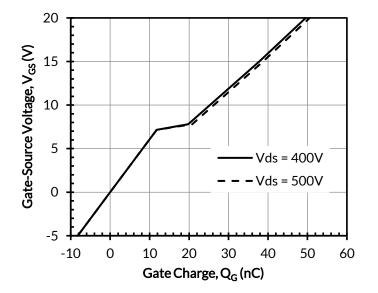


Figure 8. Typical gate charge at I_D = 20A

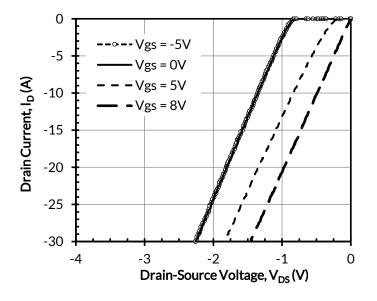


Figure 9. 3rd quadrant characteristics at $T_J = -55^{\circ}C$

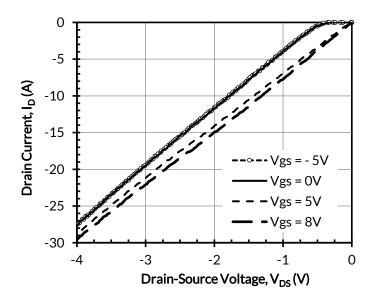


Figure 11. 3rd quadrant characteristics at $T_J = 175^{\circ}C$

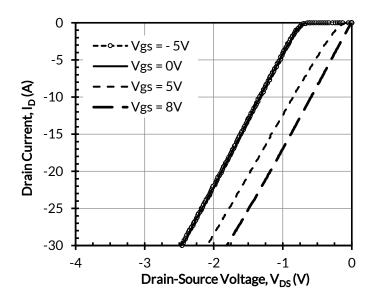


Figure 10. 3rd quadrant characteristics at $T_J = 25^{\circ}C$

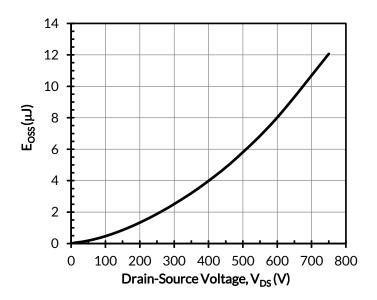


Figure 12. Typical stored energy in C_{OSS} at V_{GS} = 0V

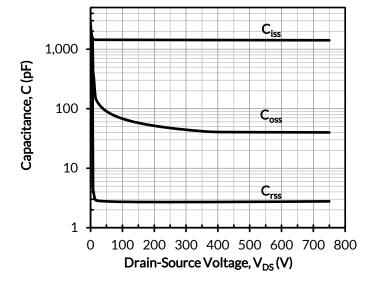


Figure 13. Typical capacitances at f = 100kHz and V_{GS} = 0V

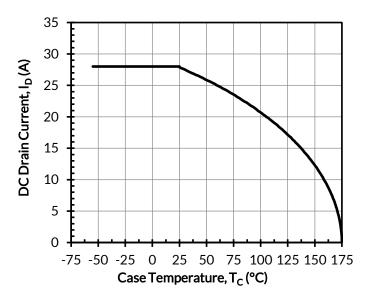


Figure 14. DC drain current derating

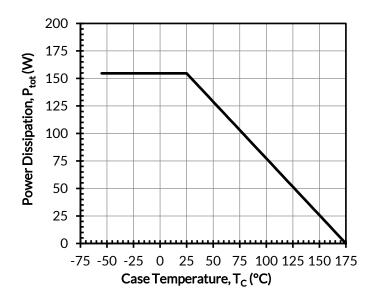


Figure 15. Total power dissipation

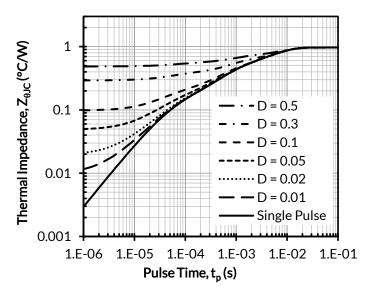


Figure 16. Maximum transient thermal impedance

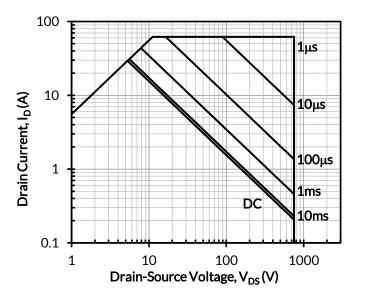
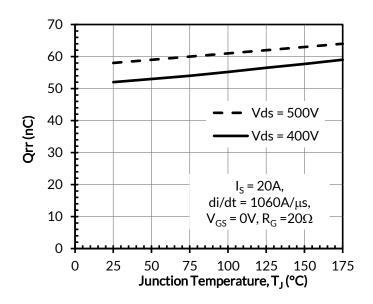



Figure 17. Safe operation area at $T_{\rm C}$ = 25°C, D = 0, Parameter $t_{\rm p}$

Spice Models

Contact

0 0 More

Buy Online

Related

Devices

Figure 18. Reverse recovery charge Qrr vs. junction temperature

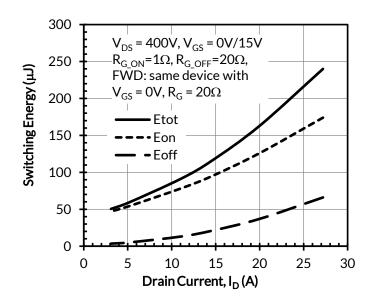


Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

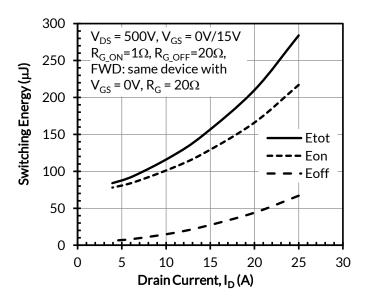


Figure 20. Clamped inductive switching energy vs. drain current at $V_{\rm DS}$ = 500V and $T_{\rm J}$ = 25°C

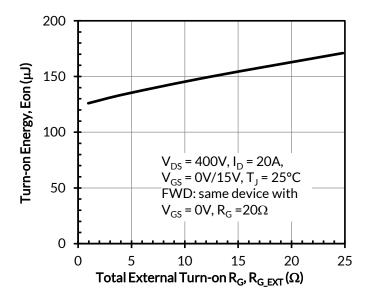


Figure 21. Clamped inductive switching turn-on energy vs. $R_{G,\text{EXT_ON}}$

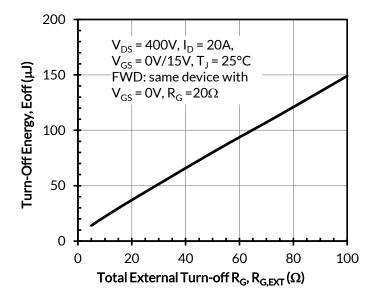


Figure 22. Clamped inductive switching turn-off energy vs. $R_{G,\text{EXT_OFF}}$

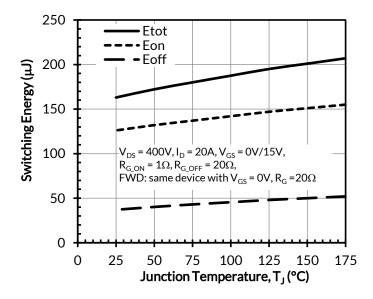


Figure 23. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_D = 20A

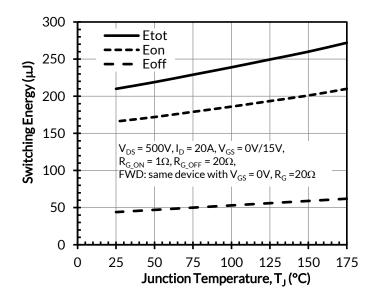
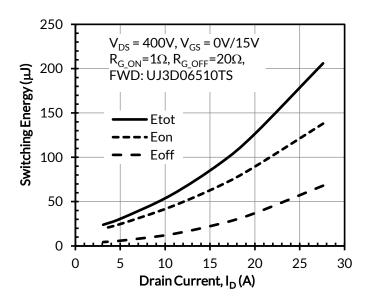
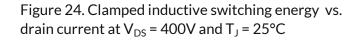




Figure 24. Clamped inductive switching energy vs. junction temperature at V_{DS} =500V and I_D = 20A

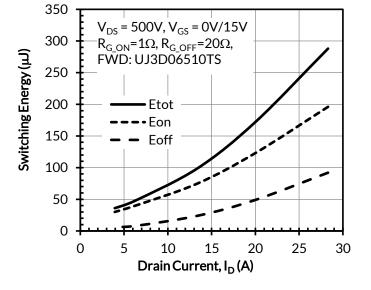


Figure 25. Clamped inductive switching energy vs. drain current at V_{DS} = 500V and T_J = 25°C

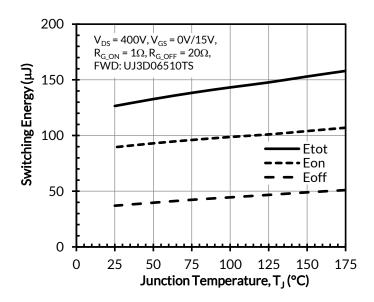


Figure 26. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_D = 20A

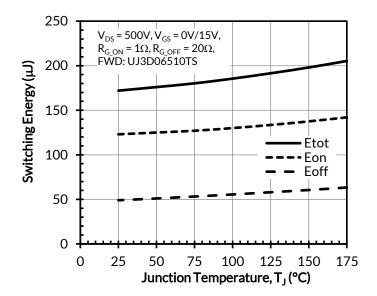


Figure 27. Clamped inductive switching energy vs. junction temperature at V_{DS} =500V and I_D = 20A

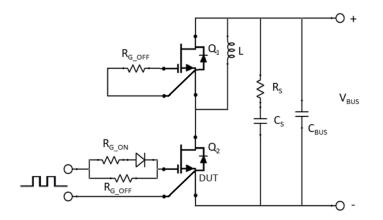


Figure 28. Schematic of the half-bridge mode switching test circuit. Note, a bus RC snubber ($R_s = 2.5\Omega$, $C_s = 100$ nF) is used to reduce the power loop high frequency oscillations.

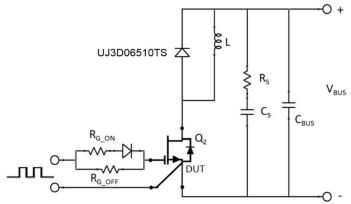


Figure 29. Schematic of the chopper mode switching test circuit. Note, a bus RC snubber ($R_s = 2.5\Omega$, $C_s=100$ nF) is used to reduce the power loop high frequency oscillations.

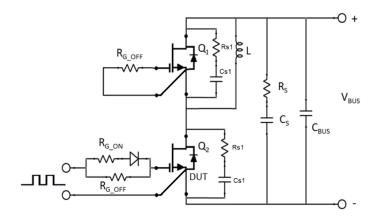


Figure 30. Schematic of the half-bridge mode switching test circuit with device RC snubbers ($R_{s1} = 10\Omega$, $C_{s1} = 95$ pF) and a bus RC snubber ($R_{s} = 2.5\Omega$, $C_{s} = 100$ nF).