

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC8233TK$

SIGE:C LOW NOISE AMPLIFIER FOR GPS/MOBILE COMMUNICATIONS

DESCRIPTION

The μ PC8233TK is a silicon germanium carbon (SiGe:C) monolithic integrated circuit designed as low noise amplifier for GPS and mobile communications. This device exhibits low noise figure and high power gain characteristics. This device is enabled in the frequency range from 1.5 to 2.4 GHz by modifying the external matching circuit.

This device is suitable for the reduction in power consumption of the mobile communication system because it operates by low voltage and low current.

The package is 6-pin lead-less minimold, suitable for surface mount.

This IC is manufactured using our UHS4 (Ultra High Speed Process) SiGe:C bipolar process.

FEATURES

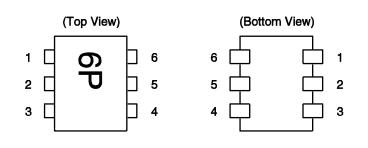
•	Supply voltage	: Vcc = 1.6 to 3.3 V (2.7 V TYP.)
•	Low noise	: NF = 0.90 dB TYP. @ Vcc = 2.7 V, fin = 1 575 MHz
		NF = 0.90 dB TYP. @ Vcc = 1.8 V, fin = 1 575 MHz
•	High gain	: GP = 20 dB TYP. @ Vcc = 2.7 V, f_{in} = 1 575 MHz
		GP = 19.5 dB TYP. @ Vcc = 1.8 V, fin = 1 575 MHz
•	Low current consumption	: Icc = 3.5 mA TYP. @ Vcc = 2.7 V
•	Built-in power-saving function	: VPSon = 1.0 V to Vcc, VPSoff = 0.0 to 0.4 V
•	High-density surface mounting	: 6-pin lead-less minimold package (1.5 \times 1.1 \times 0.55 mm)
•	Included very robust bandgap regulat	tor (Small Vcc and TA dependence)

Included protection circuits for ESD

APPLICATION

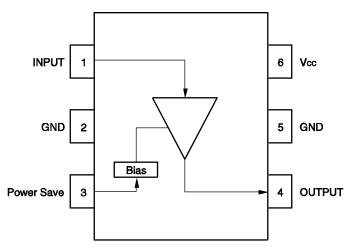
· Low noise amplifier for GPS and mobile communications

ORDERING INFORMATION


Part Number	Order Number	Package	Marking	Supplying Form
μΡC8233TK-E2	μΡC8233TK-E2-A	6-pin lead-less minimold (1511 PKG) (Pb-Free)	6P	 8 mm wide embossed taping Pin 1, 6 face the perforation side of the tape Qty 5 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office. Part number for sample order: μ PC8233TK-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTIONS

Pin No.	Pin Name
1	INPUT
2	GND
3	Power Save
4	OUTPUT
5	GND
6	Vcc

INTERNAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	Vcc	TA = +25°C	4.0	V
Power-Saving Voltage	Vps	TA = +25°C	4.0	V
Power Dissipation	PD	T _A = +85°C Note	232	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		–55 to +150	°C
Input Power	Pin		+10	dBm

Note Mounted on double-side copper-clad $50\times50\times1.6$ mm epoxy glass PWB

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	1.6	2.7	3.3	V
Operating Ambient Temperature	TA	-40	+25	+85	°C
Power Save Turn-on Voltage	VPSon	1.0	-	Vcc	V
Power Save Turn-off Voltage	VPSoff	0	-	0.4	V

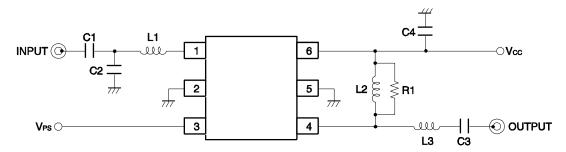
ELECTRICAL CHARACTERISTICS

(TA = +25°C, Vcc = VPs = 2.7 V, fin = 1 575 MHz, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	lcc	No Signal (VPs = 2.7 V)	2.5	3.5	4.8	mA
		At Power-Saving Mode (VPs = 0 V)	-	-	1	μA
Power Gain	G₽	Pin = −35 dBm	17.5	20.0	22.5	dB
Noise Figure	NF		-	0.9	1.2	dB
Input Return Loss	RLin		7	10	_	dB
Output Return Loss	RLout		10	16	-	dB

STANDARD CHARACTERISTICS FOR REFERENCE 1

(TA = +25°C, Vcc = VPs = 2.7 V, fin = 1 575 MHz, unless otherwise specified)


Parameter	Symbol	Test Conditions	Reference	Unit
Input 3rd Order Intercept Point	IIP3	fin1 = 1 575 MHz, fin2 = 1 574 MHz	-8.5	dBm
Isolation	ISL		36	dB
Gain 1 dB Compression Input Power	Pin (1 dB)		-23	dBm

STANDARD CHARACTERISTICS FOR REFERENCE 2

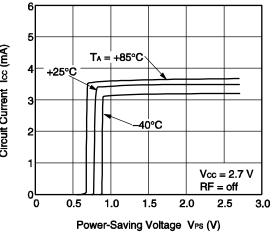
(TA = +25°C, Vcc = VPs = 1.8 V, fin = 1 575 MHz, unless otherwise specified)

Parameter	Symbol	Test Conditions	Reference	Unit
Circuit Current	lcc	No Signal (VPs = 1.8 V)	3.3	mA
Power Gain	G₽	Pin = −35 dBm	19.5	dB
Noise Figure	NF		0.9	dB
Input 3rd Order Intercept Point	IIP3	fin1 = 1 575 MHz, fin2 = 1 574 MHz	-9.5	dBm
Input Return Loss	RLin		9.5	dB
Output Return Loss	RLout		15.5	dB
Isolation	ISL		36	dB
Gain 1 dB Compression Input Power	Pin (1 dB)		-23.5	dBm

TEST CIRCUIT

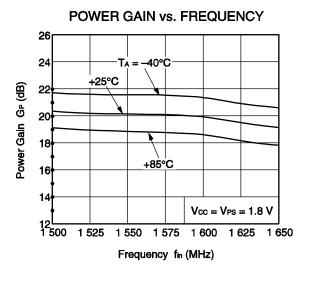
COMPONENT LIST

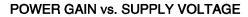
Symbol	Type Value		Unit
C1	Chip Capacitor	Chip Capacitor 1 000 p	
C2	Chip Capacitor	1.2	pF
C3	Chip Capacitor	18	pF
C4	Chip Capacitor	1 000	pF
L1	Chip Inductor	8.2	nH
L2	Chip Inductor	18	nH
L3	Chip Inductor	6.8	nH
R1	Chip Resistor	360	Ω

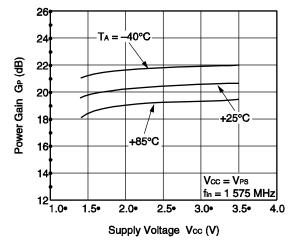

TYPICAL CHARACTERISTICS (T_A = +25°C, unless otherwise specified)


Remark The graphs indicate nominal characteristics.

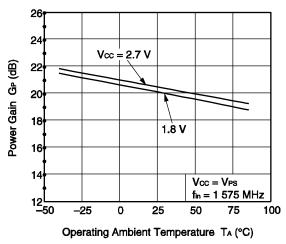


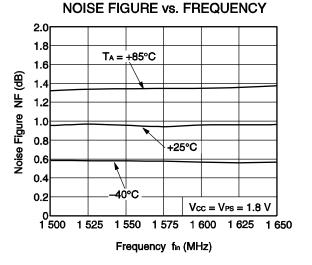


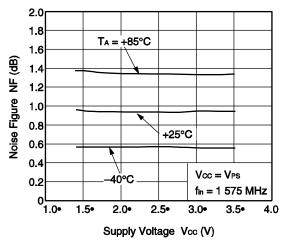

CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE

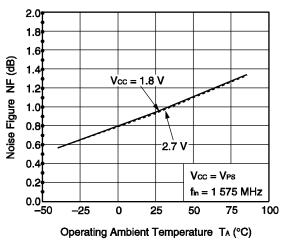


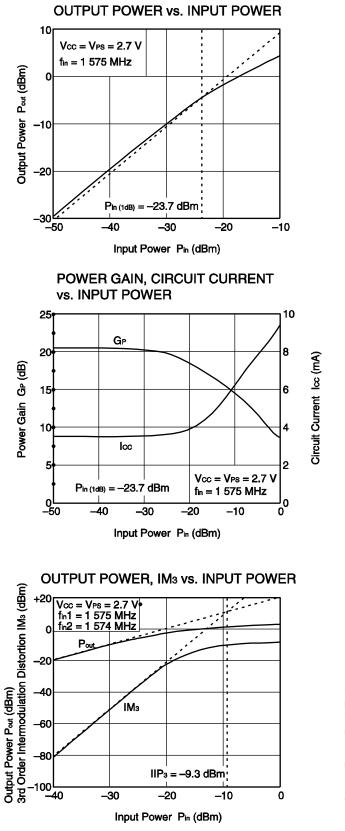
NOISE FIGURE vs. FREQUENCY





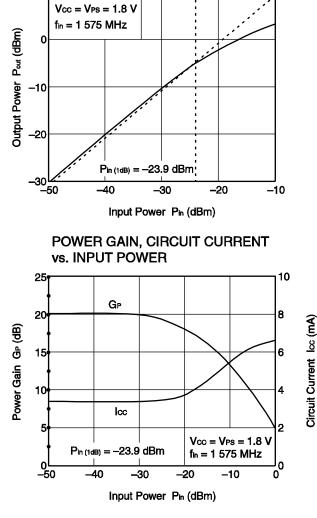


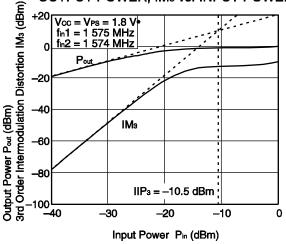

Remark The graphs indicate nominal characteristics.

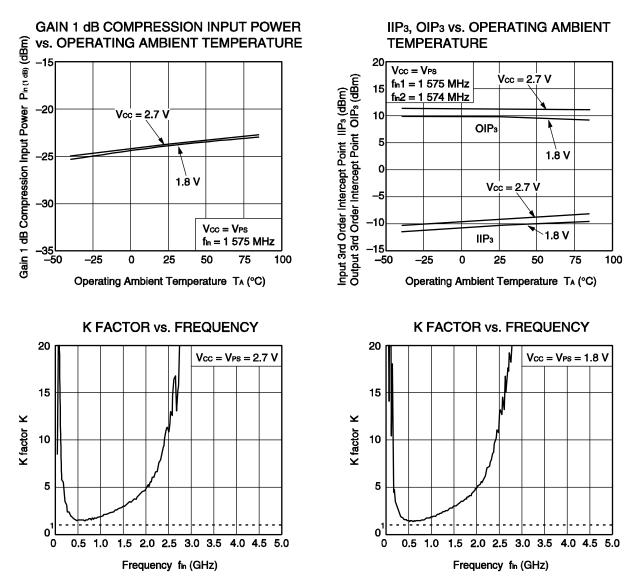


NOISE FIGURE vs. SUPPLY VOLTAGE

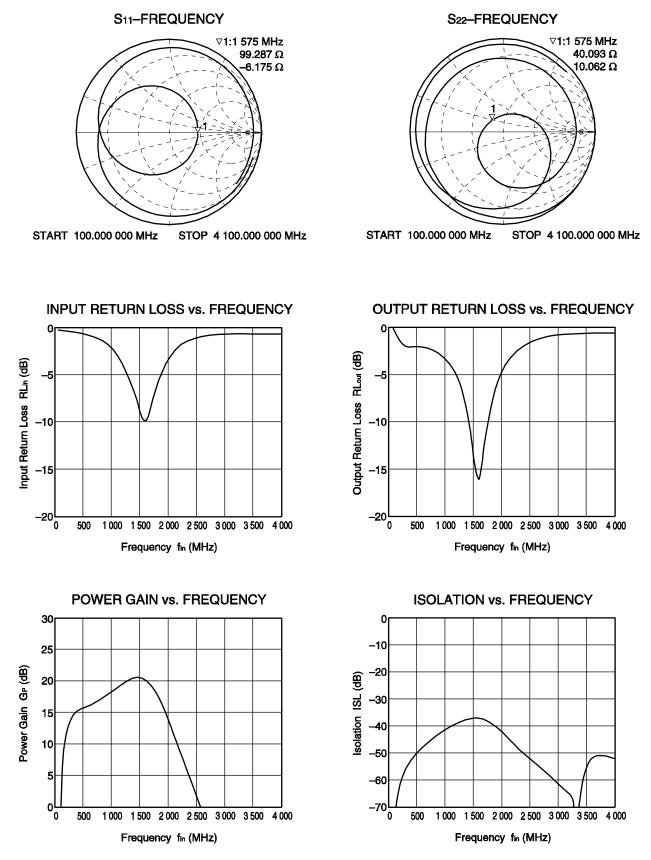
NOISE FIGURE vs. OPERATING AMBIENT TEMPERATURE



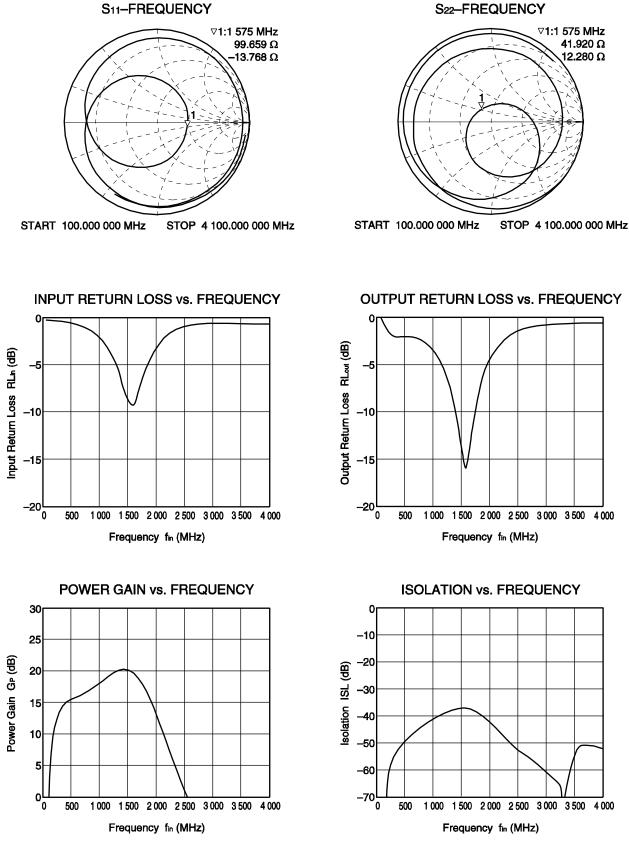

Remark The graphs indicate nominal characteristics.


OUTPUT POWER vs. INPUT POWER

10



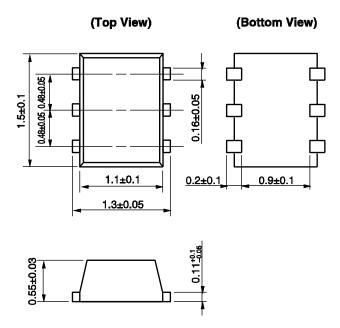
OUTPUT POWER, IM3 vs. INPUT POWER


Remark The graphs indicate nominal characteristics.

S-PARAMETERS (T_A = +25°C, V_{CC} = V_{PS} = 2.7 V, monitored at connector on board)

Remark The graphs indicate nominal characteristics.

Data Sheet PU10706EJ01V0DS


S-PARAMETERS (TA = +25°C, Vcc = VPs = 1.8 V, monitored at connector on board)

 $\label{eq:result} \textbf{Remark} \hspace{0.2cm} \text{The graphs indicate nominal characteristics.}$

Data Sheet PU10706EJ01V0DS

PACKAGE DIMENSIONS

6-PIN LEAD-LESS MINIMOLD (1511 PKG) (UNIT: mm)

