Axial TransGuard® and StaticGuard

Axial Multilayer Ceramic Transient Voltage Suppressors

GENERAL DESCRIPTION

Axial TransGuard® multilayer varistors are zinc oxide (ZnO) based ceramic semiconductor devices with nonlinear voltage-current characteristics (bi-directional) similar to back-to-back zener diodes. They have the added advantage of greater current and energy handling capabilities as well as EMI/RFI attenuation.

Axial StaticGuard is low capacitance version of the TransGuard and are designed for general ESD protection of CMOS, Bi-Polar, and SiGe based systems.

KYOCERA AVX Axial varistors are designed for applications where leaded component is prefered and for durability in harsh environment.

GENERAL CHARACTERISTICS

Operating Temperatures: -55°C to +125°C

Working Voltage: 3.3 - 60Vdc

Case Size: Axial Energy: 0.1 - 2.0J

· Peak Current: 30 - 300A

FEATURES

- Axial leaded, epoxy encapsulated
- Fast Response
- EMI/RFI filtering in the off-state
- Multiple strikes capability

APPLICATIONS

- · White Goods
- Industrial Equipment
- Sensors
- Relays
- · DC Motors
- · and more

HOW TO ORDER - AXIAL TRANSGUARD®

VA	1000	26	D T	400		
Varistor Axial	Case Size 1000 2000	Voltage 03 = 3.3Vdc 05 = 5.6Vdc 14 = 14Vdc 18 = 18Vdc 26 = 26Vdc 30 = 30Vdc 48 = 48Vdc 60 = 60Vdc	Energy Rating A = 0.1J D = 0.4J K = 0.6J	Clamping Voltage 100 = 12V 150 = 18V 300 = 32V 400 = 42V 580 = 60V 650 = 67V 101 = 100V 121 = 120V		

Packaging (Pcs/Reel:								
STYLE	D	R	Т					
VA1000	1,000	3,000	7,500					
VA2000	1.000	2.500	5.000					

HOW TO ORDER - AXIAL STATICGUARD

Axial TransGuard® and StaticGuard

Axial Multilayer Ceramic Transient Voltage Suppressors

AXIAL TRANSGUARD®

Part Number	V _w (DC)	V _w (AC)	$V_{_{\rm B}}$	V _c	I _{vc}	ار	E _T	I _P	Cap	Freq	Case
VA100003A100	3.3	2.3	5.0±20%	12	1	100	0.1	40	1500	K	1000
VA100003D100	3.3	2.3	5.0±20%	12	1	100	0.4	150	4700	K	1000
VA100005A150	5.6	4.0	8.5±20%	18	1	35	0.1	40	1000	K	1000
VA100005D150	5.6	4.0	8.5±20%	18	1	35	0.4	150	2800	K	1000
VA100014A300	14.0	10.0	18.5±12%	32	1	15	0.1	40	325	K	1000
VA100014D300	14.0	10.0	18.5±12%	32	1	15	0.4	150	1100	K	1000
VA100018A400	18.0	13.0	25.5±10%	42	1	10	0.1	40	350	K	1000
VA100018D400	18.0	13.0	25.5±10%	42	1	10	0.4	150	900	K	1000
VA100026D580	26.0	18.0	34.5±10%	60	1	10	0.4	120	650	К	1000
VA100030D650	30.0	21.0	41.0±10%	67	1	10	0.4	120	550	K	1000
VA100048D101	48.0	34.0	62.0±10%	100	1	10	0.4	100	200	K	1000
VA200060K121	60.0	42.0	76.0±10%	120	1	10	2.0	300	400	K	2000

AXIAL STATICGUARD

Part Number	V _w (DC)	V _w (AC)	$V_{_{\mathrm{B}}}$	V _c	I _{vc}	ار	E _T	I _P	Сар	Freq	Case
VA10LC18A500	≤18.0	≤14.0	25-40	50	1	10	0.1	30	200	K	1000

 I_{P}

 $V_w(DC)$ DC Working Voltage [V] $V_w(AC)$ AC Working Voltage [V]

 $\boldsymbol{V}_{\!\scriptscriptstyle B}$ Typical Breakdown Votage (V @ 1mApp) $V_{\scriptscriptstyle B}$ Tol V_R Tolerance is ± from Typical Value

 $V_{\rm c}$ Clamping Voltage (V @ I_{vc}) Test Current for $V_{_{\mathbb{C}}}$ (A, 8x20 μ S)

Maximum Leakage Current at the Working Voltage (µA)

E_{T} Transient Energy Rating (J, 10x1000µS)

Peak Current Rating (A, 8x20µS)

Typical Capacitance (pF) @ frequency specified and $0.5\,V_{\scriptscriptstyle RMS}$ Cap

Frequency at which capacitance is measured Freq

(K = 1kHz, M = 1MHz)

DIMENSIONS:

mm (inches)

Style		VA1000	VA2000		
(L) Max Length	mm	4.32	4.83		
(L) Widx Eerigiii	(in.)	(0.170)	(0.190)		
(D) Max Diameter	mm	2.54	3.56		
(D) Max Diameter	(in.)	(0.100)	(0.140)		

Lead Finish: Copper Clad Steel, Solder Coated

