Axial TransGuard® and StaticGuard # **Axial Multilayer Ceramic Transient Voltage Suppressors** #### GENERAL DESCRIPTION Axial TransGuard® multilayer varistors are zinc oxide (ZnO) based ceramic semiconductor devices with nonlinear voltage-current characteristics (bi-directional) similar to back-to-back zener diodes. They have the added advantage of greater current and energy handling capabilities as well as EMI/RFI attenuation. Axial StaticGuard is low capacitance version of the TransGuard and are designed for general ESD protection of CMOS, Bi-Polar, and SiGe based systems. KYOCERA AVX Axial varistors are designed for applications where leaded component is prefered and for durability in harsh environment. ### **GENERAL CHARACTERISTICS** Operating Temperatures: -55°C to +125°C Working Voltage: 3.3 - 60Vdc Case Size: Axial Energy: 0.1 - 2.0J · Peak Current: 30 - 300A ### **FEATURES** - Axial leaded, epoxy encapsulated - Fast Response - EMI/RFI filtering in the off-state - Multiple strikes capability ### **APPLICATIONS** - · White Goods - Industrial Equipment - Sensors - Relays - · DC Motors - · and more ## **HOW TO ORDER - AXIAL TRANSGUARD®** | VA | 1000 | 26 | D
T | 400 | | | |-------------------|------------------------------|---|--|---|--|--| | Varistor
Axial | Case
Size
1000
2000 | Voltage
03 = 3.3Vdc
05 = 5.6Vdc
14 = 14Vdc
18 = 18Vdc
26 = 26Vdc
30 = 30Vdc
48 = 48Vdc
60 = 60Vdc | Energy
Rating
A = 0.1J
D = 0.4J
K = 0.6J | Clamping
Voltage
100 = 12V
150 = 18V
300 = 32V
400 = 42V
580 = 60V
650 = 67V
101 = 100V
121 = 120V | | | | Packaging (Pcs/Reel: | | | | | | | | | |----------------------|-------|-------|-------|--|--|--|--|--| | STYLE | D | R | Т | | | | | | | VA1000 | 1,000 | 3,000 | 7,500 | | | | | | | VA2000 | 1.000 | 2.500 | 5.000 | | | | | | #### **HOW TO ORDER - AXIAL STATICGUARD** # Axial TransGuard® and StaticGuard # **Axial Multilayer Ceramic Transient Voltage Suppressors** ### **AXIAL TRANSGUARD®** | Part Number | V _w (DC) | V _w (AC) | $V_{_{\rm B}}$ | V _c | I _{vc} | ار | E _T | I _P | Cap | Freq | Case | |--------------|---------------------|---------------------|----------------|----------------|-----------------|-----|----------------|----------------|------|------|------| | VA100003A100 | 3.3 | 2.3 | 5.0±20% | 12 | 1 | 100 | 0.1 | 40 | 1500 | K | 1000 | | VA100003D100 | 3.3 | 2.3 | 5.0±20% | 12 | 1 | 100 | 0.4 | 150 | 4700 | K | 1000 | | VA100005A150 | 5.6 | 4.0 | 8.5±20% | 18 | 1 | 35 | 0.1 | 40 | 1000 | K | 1000 | | VA100005D150 | 5.6 | 4.0 | 8.5±20% | 18 | 1 | 35 | 0.4 | 150 | 2800 | K | 1000 | | VA100014A300 | 14.0 | 10.0 | 18.5±12% | 32 | 1 | 15 | 0.1 | 40 | 325 | K | 1000 | | VA100014D300 | 14.0 | 10.0 | 18.5±12% | 32 | 1 | 15 | 0.4 | 150 | 1100 | K | 1000 | | VA100018A400 | 18.0 | 13.0 | 25.5±10% | 42 | 1 | 10 | 0.1 | 40 | 350 | K | 1000 | | VA100018D400 | 18.0 | 13.0 | 25.5±10% | 42 | 1 | 10 | 0.4 | 150 | 900 | K | 1000 | | VA100026D580 | 26.0 | 18.0 | 34.5±10% | 60 | 1 | 10 | 0.4 | 120 | 650 | К | 1000 | | VA100030D650 | 30.0 | 21.0 | 41.0±10% | 67 | 1 | 10 | 0.4 | 120 | 550 | K | 1000 | | VA100048D101 | 48.0 | 34.0 | 62.0±10% | 100 | 1 | 10 | 0.4 | 100 | 200 | K | 1000 | | VA200060K121 | 60.0 | 42.0 | 76.0±10% | 120 | 1 | 10 | 2.0 | 300 | 400 | K | 2000 | ### **AXIAL STATICGUARD** | Part Number | V _w (DC) | V _w (AC) | $V_{_{\mathrm{B}}}$ | V _c | I _{vc} | ار | E _T | I _P | Сар | Freq | Case | |--------------|---------------------|---------------------|---------------------|----------------|-----------------|----|----------------|----------------|-----|------|------| | VA10LC18A500 | ≤18.0 | ≤14.0 | 25-40 | 50 | 1 | 10 | 0.1 | 30 | 200 | K | 1000 | I_{P} $V_w(DC)$ DC Working Voltage [V] $V_w(AC)$ AC Working Voltage [V] $\boldsymbol{V}_{\!\scriptscriptstyle B}$ Typical Breakdown Votage (V @ 1mApp) $V_{\scriptscriptstyle B}$ Tol V_R Tolerance is ± from Typical Value $V_{\rm c}$ Clamping Voltage (V @ I_{vc}) Test Current for $V_{_{\mathbb{C}}}$ (A, 8x20 μ S) Maximum Leakage Current at the Working Voltage (µA) #### E_{T} Transient Energy Rating (J, 10x1000µS) Peak Current Rating (A, 8x20µS) Typical Capacitance (pF) @ frequency specified and $0.5\,V_{\scriptscriptstyle RMS}$ Cap Frequency at which capacitance is measured Freq (K = 1kHz, M = 1MHz) #### **DIMENSIONS:** ### mm (inches) | Style | | VA1000 | VA2000 | | | |-------------------|-------|---------|---------|--|--| | (L) Max Length | mm | 4.32 | 4.83 | | | | (L) Widx Eerigiii | (in.) | (0.170) | (0.190) | | | | (D) Max Diameter | mm | 2.54 | 3.56 | | | | (D) Max Diameter | (in.) | (0.100) | (0.140) | | | Lead Finish: Copper Clad Steel, Solder Coated