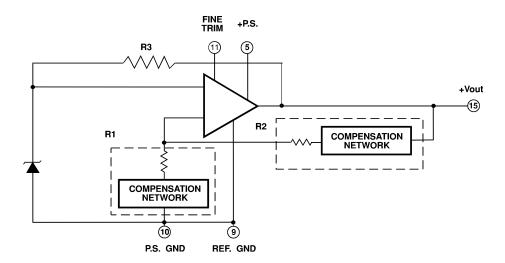


Precision Voltage Reference

FEATURES

- ♦ Very High Accuracy: +10 V Output, ±0.5 mV
- ◆ Extremely Low Drift: 1.11 ppm/°C (-55°C to +125°C)
- ♦ Low Warm-up Drift: 1 ppm Typical
- ◆ Excellent Stability: 6 ppm/1000 Hrs. Typical
- ◆ Excellent Line Regulation: 3 ppm/V Typical
- ♦ Hermetic 20-terminal Ceramic LCC Package
- ♦ Military Processing Option

APPLICATIONS


- ♦ Precision A/D and D/A Converters
- ◆ Transducer Excitation
- ♦ Accurate Comparator Threshold Reference
- ♦ High Resolution Servo Systems
- Digital Voltmeters
- High Precision Test and Measurement Instruments

DESCRIPTION

VRE210 Series Precision Voltage References provide ultrastable +10 V outputs with ± 0.5 mV initial accuracy and temperature coefficient as low as 1.11 ppm/°C over the full military temperature range. This improvement in accuracy is made possible by a unique, proprietary multipoint laser compensation technique. Significant improvements have been made in other performance parameters as well, including initial accuracy, warmup drift, line regulation, and long term stability, making the VRE210 series the most accurate and stable 10 V surface mount references available.

VRE210 devices are available in two operating temperature ranges, -25°C to +85°C and -55°C to +125°C, and two electrical performance grades. All devices are packaged in 20-terminal ceramic LCC packages for maximum long-term stability. "M" versions are screened for high reliability and quality.

Figure 1. BLOCK DIAGRAM

SELECTION GUIDE

Model	Output (V)	Temperature Operating Range	Volt Deviation (Max)		
VRE210CA	+10	-25°C to +85°C	±0.6mV		
VRE210M VRE210MA	+10 +10	-55°C to +125°C -55°C to +125°C	±1.2mV ±1.0mV		

20-terminal Ceramic LCC Package Style HD

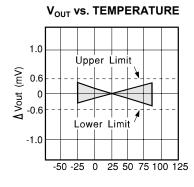
1. CHARACTERISTICS AND SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

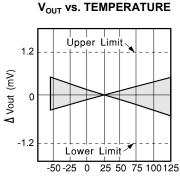
 $\rm V_{\rm PS}$ =+15V, T = +25°C, $\rm R_{\rm L}$ = 10K Ω Unless Otherwise Noted.

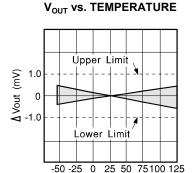
Model	VRE210CA		VRE210M		VRE210MA					
Parameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
ABSOLUTE MAXIMUM	RATINGS	5								
Power Supply	+13.5		+22	*		*	*		*	V
Operating Temperature	-25		-85	-55		+125	-55		+125	°C
Storage Temperature	-65		+150	*		*	*		*	°C
Short Circuit Protection	Continuous		*		*					
OUTPUT VOLTAGE										
VRE210		+10			*			*		V
OUTPUT VOLTAGE ERF	RORS									
Initial Error			±500			±1000			±800	μV
Warmup Drift		1			2			1		ppm
T _{MIN} - T _{MAX} (Note1)			600			1200			1000	μV
Long-Term Stability		6			*			*		ppm/1000hrs
Noise (0.1 - 10Hz)		6			*			*		μVpp
OUTPUT CURRENT										
Range	±10			*			*			mA
REGULATION										
Line		3	10		*	*		*	*	ppm/V
Load		3			*			*		ppm/mA
OUTPUT ADJUSTMENT										
Range		20			*			*		mV
Temperature Coefficient		4			*			*		mV/°C/mV
POWER SUPPLY CURR	ENT (Not	te 2)								
VRE210 +PS		5	7		*	*		*	*	mA

NOTES:

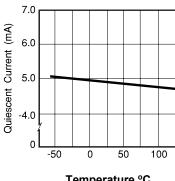

- * Same as CA Models.
- 1. Using the box method, the specified value is the maximum deviation from the output voltage at 25°C over the specified operating temperature range.

2. The specified values are unloaded.

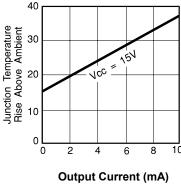

2 VRE210DS


2. TYPICAL PERFORMANCE CURVES

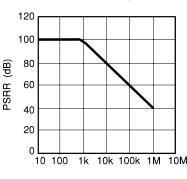
Temperature °C VRE210CA



Temperature °C VRE210M


Temperature °C VRE210MA

QUIESCENT CURRENT VS. TEMP



Temperature °C

JUNCTION TEMP. RISE VS. OUTPUT CURRENT

PSRR VS. FREQUENCY

Frequency (Hz)

3. THEORY OF OPERATION

The following discussion refers to the block diagram in Figure 1. In operation, approximately 6.3 volts is applied to the noninverting input of the op amp. The voltage is amplified by the op amp to produce a 10 V output. The gain is determined by the networks R1 and R2: G=1 + R2/R1. The 6.3V zener diode is used because it is the most stable diode over time and temperature.

The zener operating current is derived from the regulated output voltage through R3. This feedback arrangement provides a closely regulated zener current. This current determines the slope of the references' voltage vs. temperature function. By trimming the zener current a lower drift over temperature can be achieved. But since the voltage vs. temperature function is nonlinear this compensation technique is not well suited for wide temperature ranges.

A nonlinear compensation network of thermistors and resistors that is used in the VRE series voltage references. This proprietary network eliminates most of the nonlinearity in the voltage vs. temperature function. By then adjusting the slope. Thaler Corporation produces a very stable voltage over wide temperature ranges. This network is less than 2% of the overall network resistance so it has a negligible effect on long term stability. By using highly stable resistors in our network, we produce a voltage reference that also has very good long term stability.

VRE210DS 3