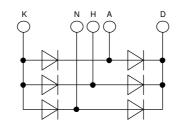


Standard Rectifier Module


3~ Rectifier Bridge

Part number VUO28-12NO7

N E72873

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: ECO-PAC1

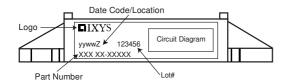
- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Height: 9 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.

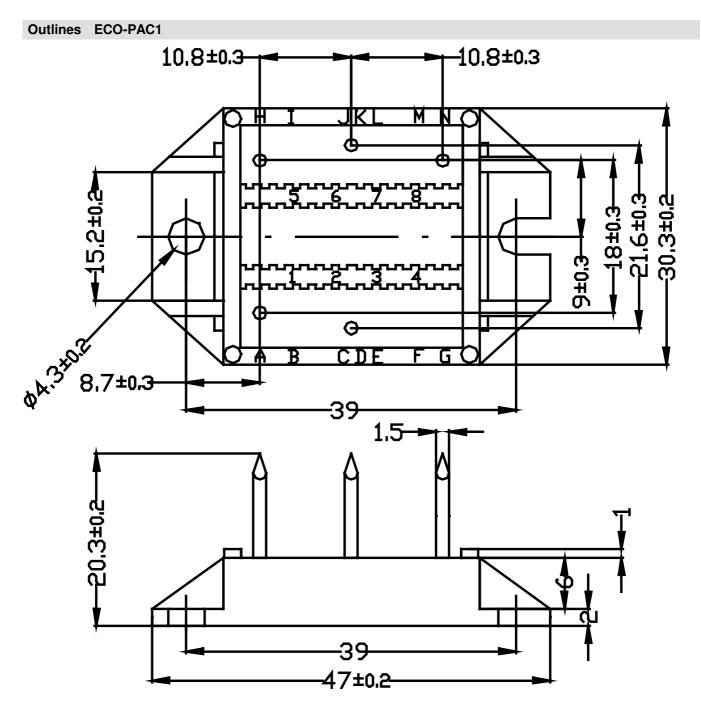
VUO28-12NO7

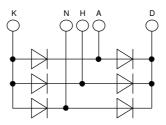

VUO28-12NO7

Rectifier					Rating	S	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	king voltage	$T_{VJ} = 25^{\circ}C$			1300	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current	$V_{R} = 1200 V$	$T_{VJ} = 25^{\circ}C$			10	μA
		$V_{R} = 1200 V$	$T_{vJ} = 150^{\circ}C$			0.7	mA
V _F	forward voltage drop	I _F = 10 A	$T_{VJ} = 25^{\circ}C$			1.20	V
		$I_{F} = 30 \text{ A}$				1.61	V
		$I_{F} = 10 \text{ A}$	T _{vJ} = 125 °C			1.14	V
		$I_{F} = 30 \text{ A}$				1.68	V
I dav	bridge output current	T _c = 105°C	T _{vJ} = 150°C			30	Α
		rectangular $d = \frac{1}{3}$					
V _{F0}	threshold voltage		T _{vJ} = 150°C			0.84	V
r _F	slope resistance } for power	loss calculation only				28.8	mΩ
R _{thJC}	thermal resistance junction to ca	ase				2.5	K/W
R _{thCH}	thermal resistance case to heats	sink			0.4		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			50	W
	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			120	А
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			130	А
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			100	Α
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			110	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			72	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			70	A²s
		t = 10 ms; (50 Hz), sine	$T_{vJ} = 150 ^{\circ}\text{C}$			50	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			50	A²s
C	junction capacitance	$V_{B} = 400 \text{ V}; \text{ f} = 1 \text{ MHz}$	$T_{vJ} = 25^{\circ}C$		4		pF

20191219b

Package ECO-PAC1			1	Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				100	Α
T _{vj}	virtual junction temperature					150	°C
T _{op}	operation temperature			-40		125	°C
T _{stg}	storage temperature			-40		125	°C
Weight					19		g
MD	mounting torque			1.4		2	Nm
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	6.0			mm
d _{Spb/Apb}			terminal to backside	10.0			mm
V	isolation voltage	t = 1 second		3000	3000		V
		t = 1 minute	50/60 Hz, RMS; liso∟ ≤ 1 mA	2500			V


Γ	Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
	Standard	VUO28-12NO7	VUO28-12NO7	Box	25	479632


Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150^{\circ}C$
	R₀	Rectifier		
V _{0 max}	threshold voltage	0.84		V
$\mathbf{R}_{0 \max}$	slope resistance *	27.6		mΩ

IXYS reserves the right to change limits, conditions and dimensions.

20191219b

IXYS reserves the right to change limits, conditions and dimensions.

20191219b