Kingbright

WP154A4AVSSUREOBFZGW

T-1 3/4 (5 mm) Single-Level Circuit Board Indicator

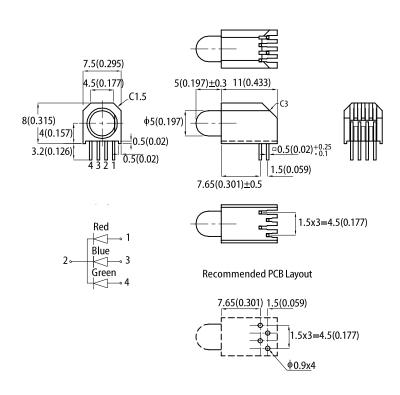
DESCRIPTIONS

- The Hyper Red source color devices are made with AlGaInP on GaAs substrate Light Emitting Diode
- The Blue source color devices are made with InGaN Light Emitting Diode
- The Green source color devices are made with InGaN on Sapphire Light Emitting Diode
- · Electrostatic discharge and power surge could damage the LEDs
- . It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs
- · All devices, equipments and machineries must be electrically grounded

FEATURES

- · Pre-trimmed leads for pc mounting
- · White case enhances contrast ratio
- · High reliability life measured in years
- Housing UL rating: 94V-0
- Housing material: Type 66 nylon
- RoHS compliant

APPLICATIONS


- Status indicator
- Illuminator
- Signage applications
- Decorative and entertainment lighting
- · Commercial and residential architectural lighting

ATTENTION

Observe precautions for handling electrostatic discharge sensitive devices

PACKAGE DIMENSIONS

- 1. All dimensions are in millimeters (inches)
- 2. Tolerance is ±0.25(0.01") unless otherwise noted.
 3. Lead spacing is measured where the leads emerge from the package.
- 4. The specifications, characteristics and technical data described in the datasheet are subject to change

SELECTION GUIDE

Part Number	Emitting Color (Material)	Lens Type	Iv (mcd) @ 20mA [2]		Viewing Angle [1]
Part Number			Min.	Тур.	201/2
WP154A4AVSSUREQBFZGW	■ Hyper Red (AlGaInP)	White Diffused	400	1000	
			*120	*250	
	■ Blue (InGaN)		300	500	60°
			*300	*500	60
	■ Green (InGaN)		600	1300	
			*600	*1300	

1. 61/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value
2. Luminous intensity / luminous flux: +/-15%.

**Luminous intensity / luminous flux: +/-15%.

Luminous intensity value is traceable to CIE127-2007 standards

ELECTRICAL / OPTICAL CHARACTERISTICS at T_A=25°C

Parameter	Symbol	Emitting Color	Va	lue	Unit	
Parameter	Symbol	Emitting Color	Тур.	Max.		
Wavelength at Peak Emission I _F = 20mA	λ_{peak}	Hyper Red Blue Green	645 460 515	-	nm	
Dominant Wavelength I _F = 20mA	λ _{dom} ^[1]	Hyper Red Blue Green	630 465 525	-	nm	
Spectral Bandwidth at 50% Φ REL MAX I _F = 20mA	Φ REL MAX $ \Delta \lambda \qquad \qquad$		25 25 30	-	nm	
Capacitance	С	Hyper Red Blue Green	45 100 45	-	pF	
Forward Voltage I _F = 20mA	V _F ^[2]	Hyper Red Blue Green	1.9 3.3 3.3	2.5 4 4.1	V	
Reverse Current (V _R = 5V)	I _R	Hyper Red Blue Green	-	10 50 50	μА	
Temperature Coefficient of λ_{peak} I_F = 20mA, -10 $^{\circ}$ C \leq T \leq 85 $^{\circ}$ C	TC_{\lambdapeak}	Hyper Red Blue Green	0.14 0.04 0.05	-	nm/°C	
Temperature Coefficient of λ_{dom} I_F = 20mA, -10 $^{\circ}$ C \leq T \leq 85 $^{\circ}$ C	$TC_{\lambda dom}$	Hyper Red Blue Green	0.05 0.03 0.03	-	nm/°C	
Temperature Coefficient of V_F I_F = 20mA, -10°C \leq T \leq 85°C	TC _V	Hyper Red Blue Green	-1.9 -3 -3	-	mV/°C	

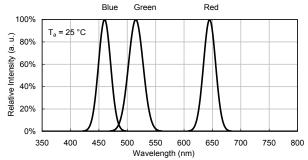
Notes:

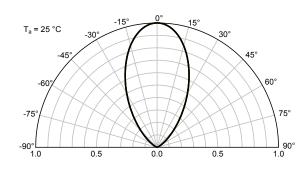
1. The dominant wavelength (λd) above is the setup value of the sorting machine. (Tolerance λd : ± 1 nm.)

2. Forward voltage: \$0.1V.
3. Wavelength value is traceable to CIE127-2007 standards.
4. Excess driving current and / or operating temperature higher than recommended conditions may result in severe light degradation or premature failure.

ABSOLUTE MAXIMUM RATINGS at T_A=25°C

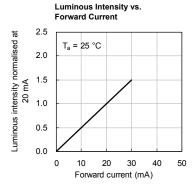
	Symbol	Value			
Parameter		Hyper Red	Blue	Green	Unit
Power Dissipation	P _D	75	120	102.5	mW
Reverse Voltage	V _R	5	5	5	V
Junction Temperature	T _j	115	115	115	°C
Operating Temperature	T _{op}	-40 to +85			°C
Storage Temperature	T _{stg}	-40 to +85			°C
DC Forward Current	I _F	30	30	25	mA
Peak Forward Current	I _{FM} ^[1]	200	150	150	mA
Electrostatic Discharge Threshold (HBM)	-	3000	250	450	V
Thermal Resistance (Junction / Ambient)	R _{th JA} [2]	250	190	280	°C/W
Thermal Resistance (Junction / Solder point)	R _{th JS} ^[2]	180	110	220	°C/W
Lead Solder Temperature [3]		260°C For 3 Seconds			
Lead Solder Temperature [4]		260°C For 5 Seconds			

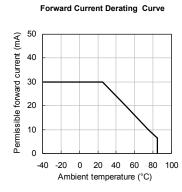

Notes:
1. 1/10 Duty Cycle, 0.1ms Pulse Width.
2. R_{in, Id}, R_{ich, Id} Results from mounting on PC board FR4 (pad size ≥ 16 mm² per pad).
3. 2mm below package base.
4. 5mm below package base.
5. Relative humidity levels maintained between 40% and 60% in production area are recommended to avoid the build-up of static electricity – Ref JEDEC/JESD625-A and JEDEC/J-STD-033.

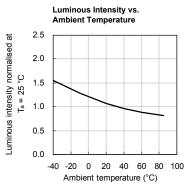


TECHNICAL DATA

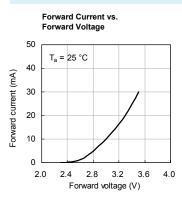
RELATIVE INTENSITY vs. WAVELENGTH

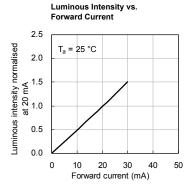


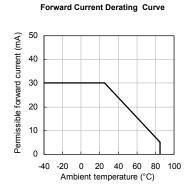

SPATIAL DISTRIBUTION



HYPER RED

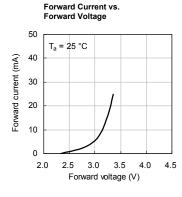

Forward Current vs. Forward Voltage 50 T_a = 25 °C 40 Forward current (mA) 30 20 10 0 1.9 2.1 2.3 Forward voltage (V)

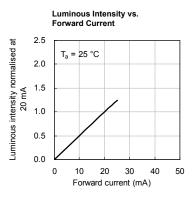


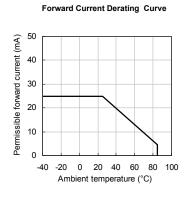


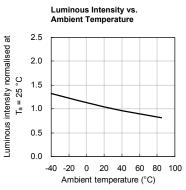


BLUE

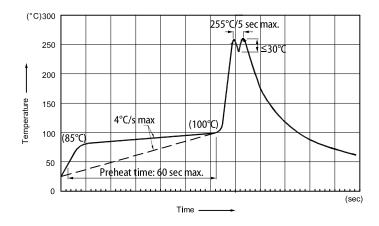








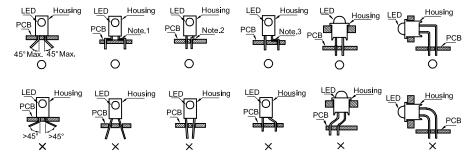
GREEN



RECOMMENDED WAVE SOLDERING PROFILE

- Notes:
 1. Recommend pre-heat temperature of 105°C or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of 260°C
- 2. Peak wave soldering temperature between 245°C ~ 255°C for 3 sec (5 sec max).
- 3. Do not apply stress to the epoxy resin while the temperature is above 85°C.
 4. Fixtures should not incur stress on the component when mounting and during soldering process.
- 5. SAC 305 solder alloy is recommended.6. No more than one wave soldering pass.

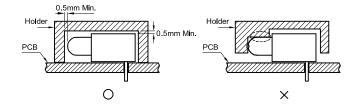
PRECAUTIONS


Storage Conditions

- 1. Avoid continued exposure to the condensing moisture environment and keep the product away from rapid transitions in ambient
- 2. LEDs should be stored with temperature ≤ 30°C and relative humidity < 60%.
- 3. Product in the original sealed package is recommended to be assembled within 72 hours of opening. Product in opened package for more than a week should be baked for 30 (+10/-0) hours at 85 ~ 100°C.

LED Mounting Method

1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead-forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures.


Note 1-3: Do not route PCB trace in the contact area between the leadframe and the PCB to prevent short-circuits.

O" Correct mounting method " x " Incorrect mounting method

Lead Forming Procedures

- 1. During soldering, component covers and holders should leave clearance to avoid placing damaging stress on the LED during
- 2. The tip of the soldering iron should never touch the lens epoxy.
- 3. Through-hole LEDs are incompatible with reflow soldering.
- 4. If the LED will undergo multiple soldering passes or face other processes where the part may be subjected to intense heat, please check with Kingbright for compatibility.

