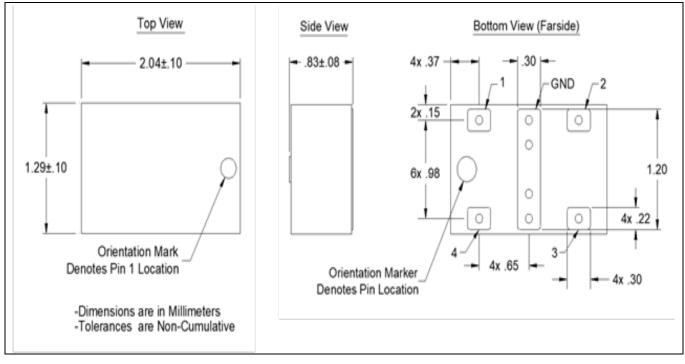


Ultra Low Profile 0805 2dB 90° Coupler

Description:

The X4C25J1-02G is a low profile, high performance 2dB 90° coupler in a new easy to use, manufacturing friendly surface mount package. It is designed for 5G applications. The X4C25J1-02G is available on tape and reel for pick and place high volume manufacturing.


All of the Xinger components are constructed from ceramic filled PTFE composites, which possess excellent electrical and mechanical stability. All parts have been subjected to rigorous qualification testing and units are 100% RF tested. Produced in an ENIG final finish.

Electrical Specifications**

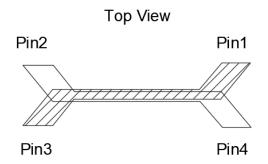
<u>Features:</u> • 2200-2800 MHz	Frequency	Coupling	Insertion Loss	Return Loss
5G Applications	MHz	dB	dB Max	dB Min
Very Low Loss	2200-2800	2 ± 0.5	0.5	20
 Tight Amplitude Balance High Isolation Production Friendly 	Isolation	Phase	Power	Operating Temp.
Tape and Reel	dB Min	Degrees	Avg. CW Watts @105C	°C
	22	90 ± 4	5	-55 to +140

**Specification based on performance of unit properly installed on TTM Test Board with small signal applied. *Specifications subject to change without notice. Refer to parameter definitions for details.

Mechanical Outline:

WWW.TTM.COM

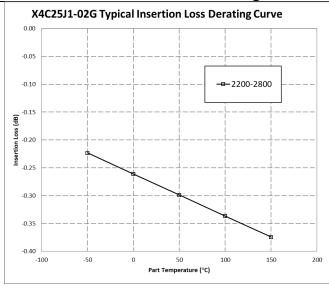
FOLLOW US f in 🎕 🖸 🖸 🗍 #TTM #TTMTECH #INSPIRINGINNOVATION


Inspiring Innovation

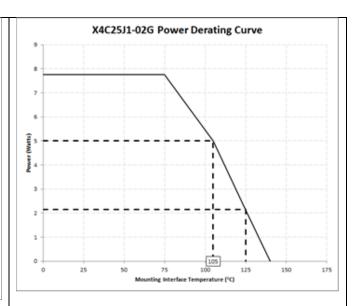
Hybrid Coupler Pin Configuration

The X4C25J1-02G has an orientation marker to denote Pin 1. Once port one has been identified the other ports are known automatically. Please see the chart below for clarification.

2dB Coupler Pin Configuration


Configuration	Pin 1	Pin 2	Pin 3	Pin 4
Splitter	Input	Isolated	-5dB < Θ -90	-2dB < Θ
Splitter	Isolated	Input	-2dB < Θ	-5dB < Θ -90
Splitter	-5dB < Θ -90	-2dB < Θ	Input	Isolated
Splitter	-2dB < Θ	-5dB < Θ -90	Isolated	Input

Note: The direct port has a DC connection to the input port and the coupled port has a DC connection to the isolated port. For optimum IL and power handling performance, use Pin 1 or Pin 3 as inputs.



Insertion Loss and Power Derating Curves

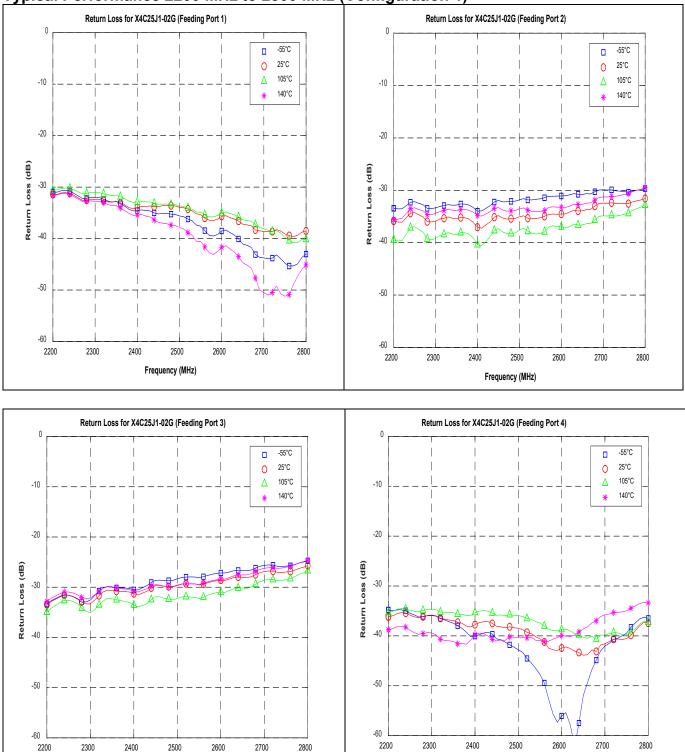
Insertion Loss Derating

The insertion loss, at a given frequency, of a group of couplers is measured at 25° C and then averaged. The measurements are performed under small signal conditions (i.e. using a Vector Network Analyzer). The process is repeated at -55°C, 105°C and 140°C. A best-fit line for the measured data is computed and then plotted from -55°C to 140°C.

Power Derating

The power handling and corresponding power derating plots are a function of the thermal resistance, mounting surface temperature (base plate temperature), maximum continuous operating temperature of the coupler, and the thermal insertion loss. The thermal insertion loss is defined in the Power Handling section of the data sheet.

As the mounting interface temperature approaches the maximum continuous operating temperature, the power handling decreases to zero.


If mounting temperature is greater than 105° C, Xinger coupler will perform reliably as long as the input power is derated to the curve above.

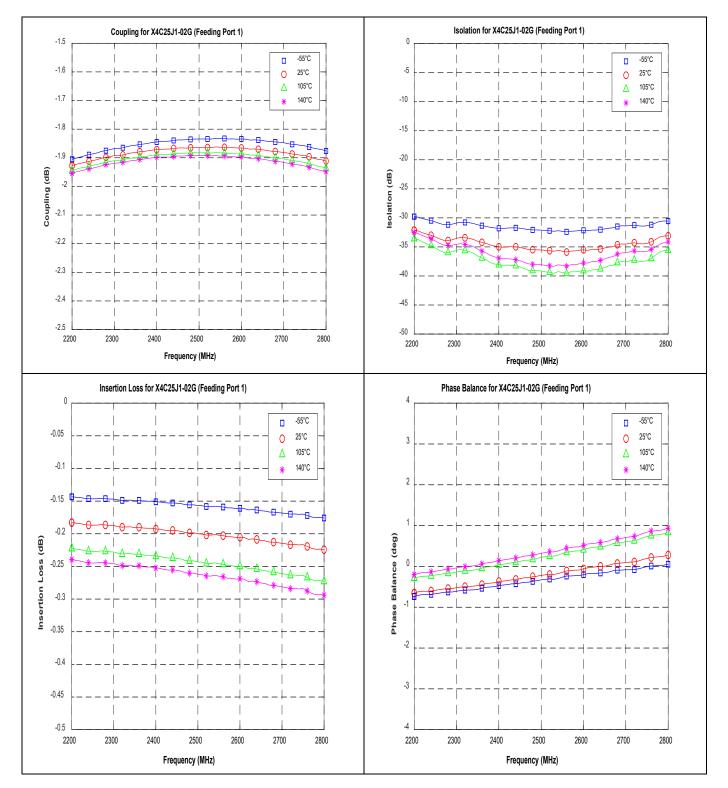
WWW.TTM.COM

FOLLOW US f in to D D #TTM #TTMTECH #INSPIRINGINNOVATION

Typical Performance 2200 MHz to 2800 MHz (Configuration 1)

WWW.TTM.COM

Frequency (MHz)


FOLLOW US f in to C f #TTM #TTMTECH #INSPIRINGINNOVATION

Inspiring Innovation

Frequency (MHz)

X4C25J1-02G Rev D

FOLLOW US f in the provided and the pro

Inspiring Innovation

Definition of Measured Specification

Parameter	Definition	Mathematical Representation
VSWR (Voltage Standing Wave Ratio)	The impedance match of the coupler to a 50Ω system. A VSWR of 1:1 is optimal.	$VSWR = \frac{V_{max}}{V_{min}}$ Vmax = voltage maxima of a standing wave Vmin = voltage minima of a standing wave
Return Loss	The impedance match of the coupler to a 50Ω system. Return Loss is an alternate means to express VSWR.	Return Loss(dB) = $20\log \frac{VSWR + 1}{VSWR - 1}$
Insertion Loss	The input power divided by the sum of the power at the two output ports.	Insertion Loss(dB) = $10\log \frac{P_{in}}{P_{cpl} + P_{direct}}$
Isolation	The input power divided by the power at the isolated port.	Isolation(dB) = $10\log \frac{P_{in}}{P_{iso}}$
Phase Balance	The difference in phase angle between the two output ports.	Phase at coupled port – Phase at direct port
Coupling	At a given frequency (ω _n), coupling is the input power divided by the power at the coupled port.	Coupling(dB) = C(ω_n) = 10log $\frac{P_{in}(\omega_n)}{P_{cpl}(\omega_n)}$
Group Delay	Group delay is average of group delay's from input port to the coupled port	Average (GD-C)