

Rev. V1

Features

Noise Figure: 2.5 dB @ 24 GHz
High Gain: 23 dB @ 24 GHz
50 Ω match on input and output

Single Voltage Bias: 3 V to 5 V range

Integrated Active Bias Circuit

Current adjustable from 1 mA - 80 mA

• Lead-Free 2 mm 8-lead PDFN Package

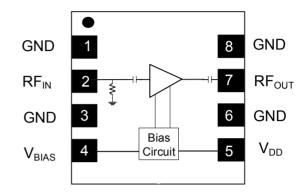
• Halogen-Free "Green" Mold Compound

RoHS* Compliant

Description

The MAAL-011129 is an easy-to-use three stage low noise amplifier with high gain and broadband 50 Ω match. It is designed for operation from 18 to 31.5 GHz and housed in a lead-free 2 mm 8-lead PDFN plastic package.

The MAAL-011129 has an integrated active bias circuit and bias tee to allow direct connection to V_{DD} without external chokes or DC blocks. The bias current is set by a simple external resistor, R_B , so the user can customize the power consumption. When $V_{BIAS} = 0$ V, the device is placed in power down mode.


The MAAL-011129 offers a surface-mount, easy-to-use, low noise amplifier solution that is well suited to diverse receiver applications such as VSAT, Point-to-Point and 24 GHz ISM.

Ordering Information^{1,2}

Part Number	Package	
MAAL-011129-TR3000	3000 piece reel	
MAAL-011129-SMB	Sample Board	

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration³

Pin No.	No. Pin Name Description		
1	GND	Ground	
2	RF _{IN}	RF Input	
3	GND	Ground	
4	V _{BIAS}	Bias Control Voltage	
5	V_{DD}	Drain Voltage	
6	GND	Ground	
7	RF _{OUT}	RF Output	
8	GND	Ground	
	Paddle	RF + DC Ground	

^{3.} The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

Rev. V1

Electrical Specifications: Freq. = 24 GHz, T_A = 25°C, V_{DD} = 5 V, R_B = 1 k Ω , Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Noise Figure	_	dB	_	2.5	3.3
Gain	P _{IN} = -20 dBm	dB	20	23	_
Input Return Loss	P _{IN} = -20 dBm	dB	_	-13	_
Output Return Loss	P _{IN} = -20 dBm	dB	_	-13	_
Output IP3	P _{IN} = -22 dBm/tone (10 MHz Tone Spacing)	dBm	_	25	_
Output P1dB		dBm	_	16	_
Isolation	P _{IN} = -20 dBm	dB	_	45	_
Bias Current		mA	_	50	65

Absolute Maximum Ratings^{4,5}

Parameter	Absolute Maximum		
Input Power	10 dBm		
Operating Voltage	6 V		
Junction Temperature ^{6,7}	+150°C		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		

- 4. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 6. Operating at nominal conditions with $T_J \le +150^{\circ}\text{C}$ will ensure MTTF > 1 x 10^6 hours.
- 7. Junction Temperature $(T_J) = T_C + \Theta jc * (V * I)$

Typical thermal resistance (Θ jc) = 102°C/W.

a) $T_C = +25^{\circ}C$,

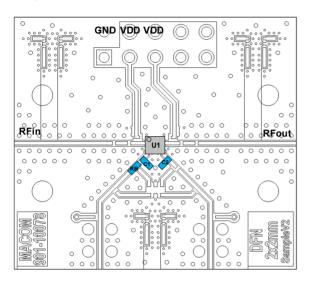
 $T_J = 51^{\circ}C @ 5 V, 50 mA$

b) $T_{C} = +85^{\circ}C$,

 $T_J = 111^{\circ}C @ 5 V, 50 mA$

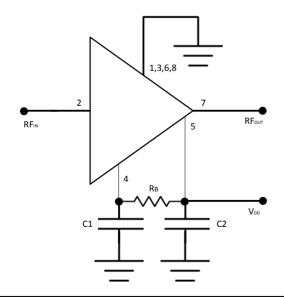
Handling Procedures

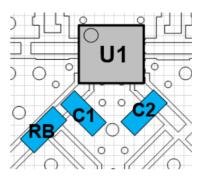
Please observe the following precautions to avoid damage:


Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Rev. V1


Sample PCB


Parts List

Des	Value	Size	Part Number	Purpose
C1 C2	0.01 μF	0201	Murata GRM033R70J103KA01D	Bypass
Rв	See chart	0201	various	Bias Resistor
U1	_	2 mm	MACOM MAAL-011129	LNA

Application Schematic

Sample PCB Layout

Application Information

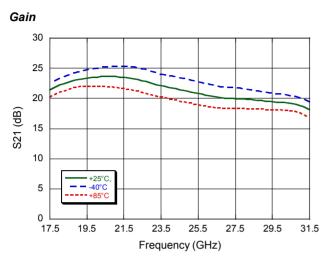
The MAAL-011129 is designed to be easy to use yet provide high performance. The ultra small size, with no matching, and simple bias application allows easy placement on system boards.

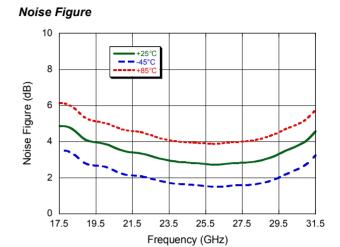
Single Bias Operation

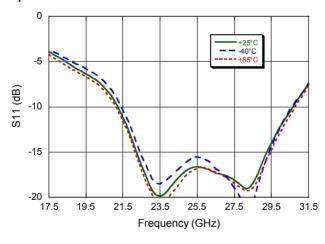
Connecting V_{DD} to V_{BIAS} using an external resistor R_B enables single bias operation of the amplifier, and the value of external resistor R_B sets the desired current I_{DD} . The following table shows drain current (I_{DD}) versus external resistor (R_B) values for V_{DD} voltages of 5 V and 3.3 V:

V _{DD} =	3.3 V	V _{DD} = 5 V		
R _B (Ω)	I _{DD} (mA)	R _B (Ω)	I _{DD} (mA)	
Open	15	Open	25	
200	50	200	80	
400	40	400	70	
1k	30	1k	50	
2k	25	2k	40	

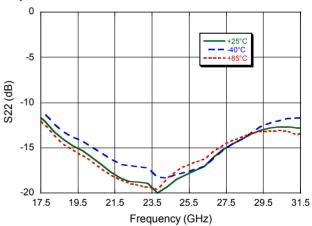
With pin 4 (V_{BIAS}) left open the amplifier will default to low power mode. When pin 4 (V_{BIAS}) is set to 0 V through RB, the device enters power down mode. In order to use power down mode a second supply is required that directly drives the RB resistor.


Grounding

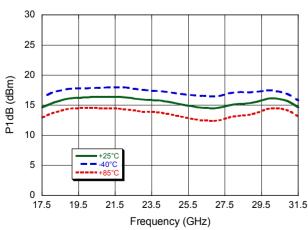

It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8-mil (200-µm) diameter vias under the device, assuming an 8-mil (200-µm) thick RF layer to ground.

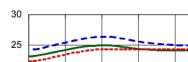

Rev. V1

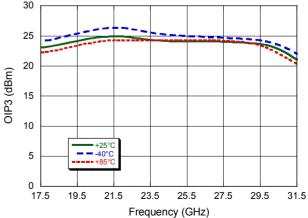
Typical Performance Curves $V_{DD} = 5 \text{ V}$, $R_B = 1 \text{ k}\Omega$



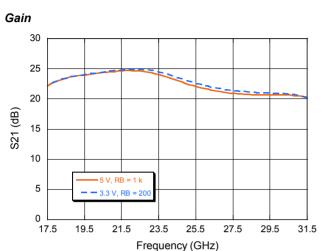
Input Return Loss

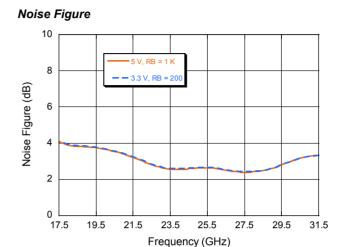


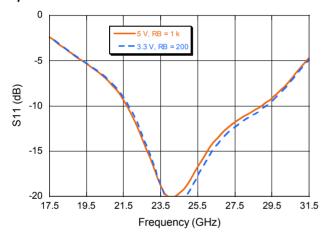



OIP3

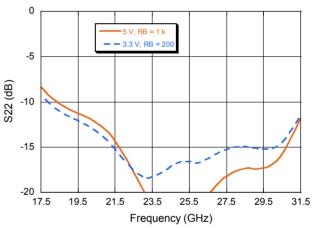
P1dB

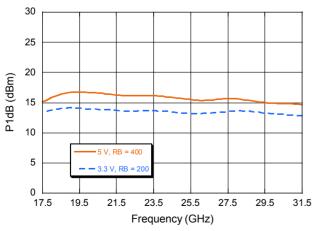


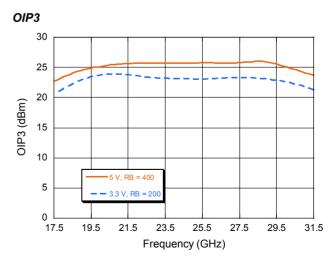

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.


Rev. V1

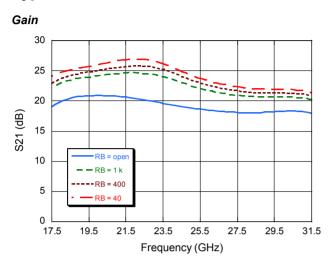
Typical Performance Curves V_{DD} = 3.3 V & 5 V

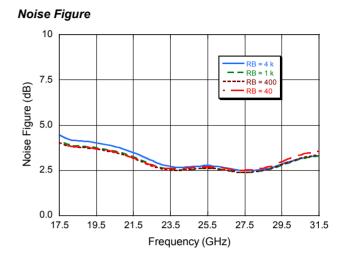


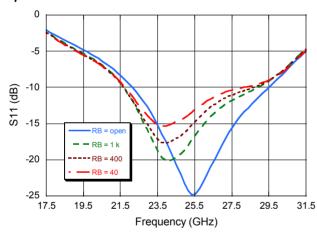

Input Return Loss



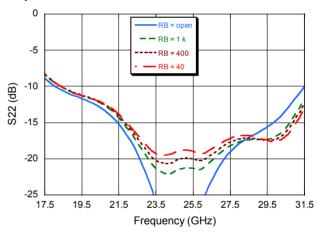
5

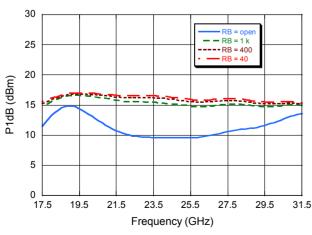

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

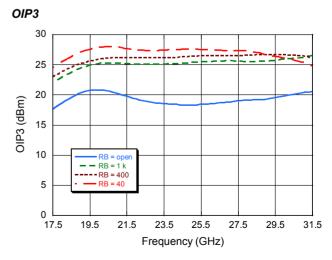

Visit www.macom.com for additional data sheets and product information.


Rev. V1

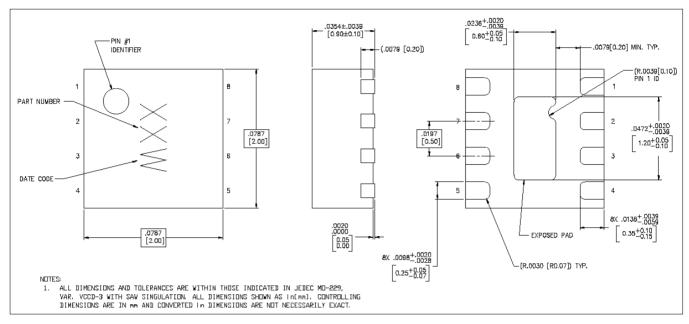
Typical Performance Curves VDD = 5 V, I_{DD} varied by R_B




Input Return Loss



6


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

Rev. V1

Lead Free 2 mm 8 Lead PDFN Package[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% Matte Tin over Copper