

Typical Applications

Test Equipment & Sensors

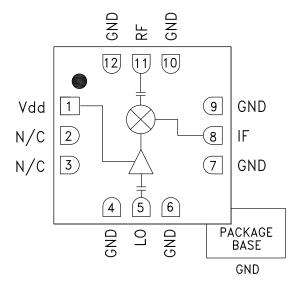
Point-to-Point Radios

Military End-Use

The HMC264LC3B is ideal for:

Point-to-Multi-Point Radios & VSAT

v04.0414


GaAs MMIC SUB-HARMONIC SMT MIXER, 21 - 31 GHz

Features

Integrated LO Amplifier: -4 to +4 dBm Input Sub-Harmonically Pumped (x2) LO High 2LO/RF Isolation: 30 dB DC - 6 GHz Wideband IF 12 Lead 3x3mm SMT Package: 9mm²

HMC264LC3B

Functional Diagram

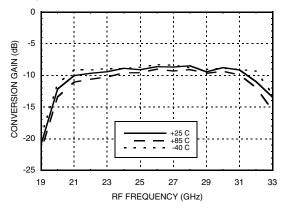
General Description

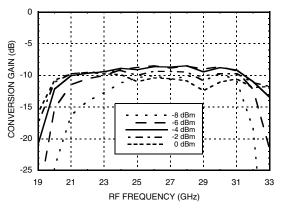
The HMC264LC3B is a 21 - 31 GHz Sub-harmonically Pumped (x2) MMIC Mixer with an integrated LO amplifier in a leadless "Pb Free" SMT package. The 2LO to RF isolation is excellent at 30 dB, eliminating the need for additional filtering. The LO amplifier is a single bias (+3V to +4V) design with only -4 to +4 dBm drive requirement. The RF and LO ports are DC blocked and matched to 50 Ohms for ease of use while the IF covers DC to 6 GHz. The HMC264LC3B eliminates the need for wire bonding, allowing use of surface mount manufacturing techniques.

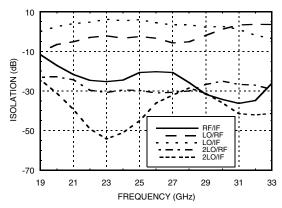
Electrical Specifications, $T_{A} = +25 \text{ °C}$, As a Function of LO Drive & Vdd

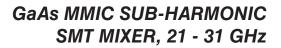
Parameter	IF = 1 GHz LO = -4 dBm & Vdd = +4V			IF = 1 GHz LO = -4 dBm & Vdd = +3V			Units
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Frequency Range, RF	21 - 31			22 - 31			GHz
Frequency Range, LO	10.5 - 15.5 11			11 - 15.5	11 - 15.5		
Frequency Range, IF	DC - 6			DC - 6			GHz
Conversion Loss		9	12		9	12	dB
Noise Figure (SSB)		9	12		9	12	dB
2LO to RF Isolation	20	30		18	30		dB
2LO to IF Isolation	25	40		25	40		dB
IP3 (Input)		12			10		dBm
1 dB Compression (Input)		+3			+1		dBm
Supply Current (Idd)		28			25		mA

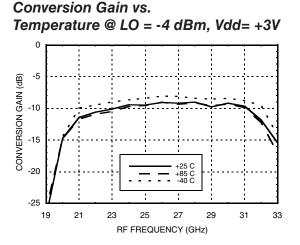
*Unless otherwise noted, all measurements performed as downconverter, IF= 1 GHz.

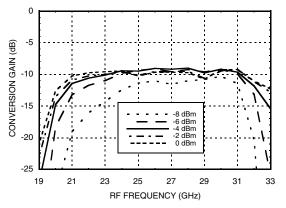

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

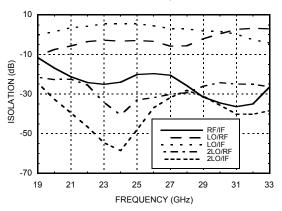

v04.0414


Conversion Gain vs. Temperature @ LO = -4 dBm, Vdd= +4V




Conversion Gain vs. LO Drive @ Vdd = +4V

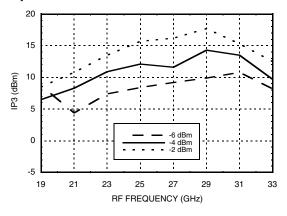

Isolation @ LO = -4 dBm, Vdd = +4V



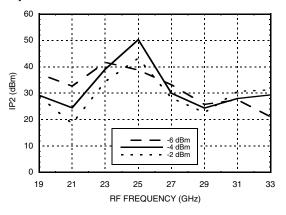
Conversion Gain vs. LO Drive @ Vdd = +3V

Isolation @ LO = -4 dBm, Vdd = +3V

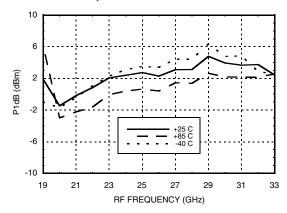
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



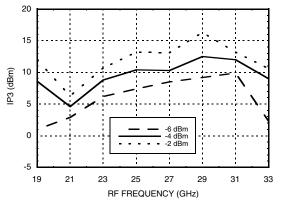
GaAs MMIC SUB-HARMONIC SMT MIXER, 21 - 31 GHz

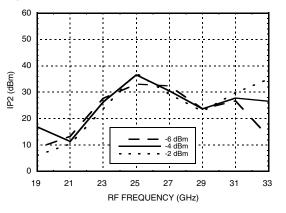


Input IP3 vs. LO Drive @ Vdd = +4V *

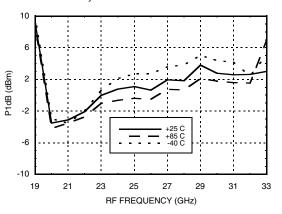

v04.0414

Input IP2 vs. LO Drive @ Vdd = +4V *


Input P1dB vs. Temperature @ LO = -4 dBm, Vdd = +4V

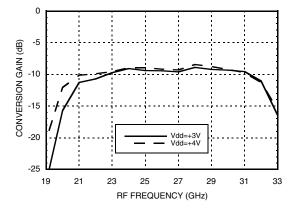

* Two-tone input power = -10 dBm each tone, 1 MHz spacing.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third paties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



Input IP2 vs. LO Drive @ Vdd = +3V *

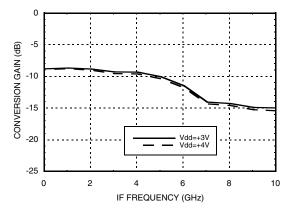
Input P1dB vs. Temperature @ LO = -4 dBm, Vdd = +3V

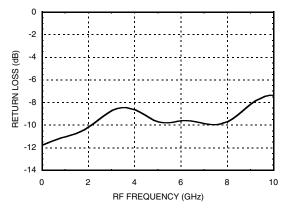


GaAs MMIC SUB-HARMONIC SMT MIXER, 21 - 31 GHz

Upconverter Performance Conversion Gain @ LO = -4 dBm

v04.0414


RF & LO Return Loss @ LO = -4 dBm


MxN Spurious Outputs @ LO = -4 dBm, Vdd = +4V

	nLO					
mRF	±5	±4	±3	±2	±1	0
-2	30					
-1	60	39	31			
0			17	14	-17	
1				Х	35	25
2		46	42	64	64	
3	82	80	82			
$\label{eq:RF} \begin{array}{l} RF = 30 \; GHz @ \ -10 \; dBm \\ LO = 13.5 \; GHz @ \ -4 \; dBm \\ All \; values \; in \; dBc \; below \; IF \; power \; level. \end{array}$						

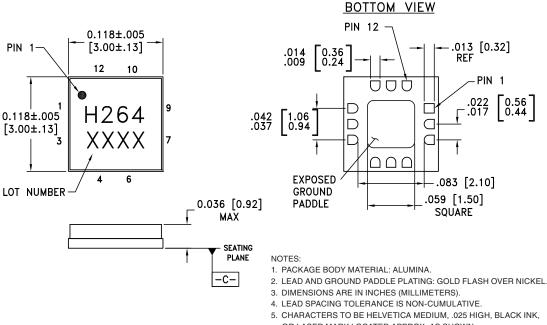
IF Return Loss @ LO = -4 dBm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v04.0414

Absolute Maximum Ratings

	1
RF / IF Input (Vdd = +5V)	+13 dBm
LO Drive (Vdd = +5V)	+13 dBm
Vdd	5.5V
Channel Temperature	175 °C
Continuous Pdiss (Ta = 85 °C) (derate 2.52 mW/°C above 85 °C)	227 mW
Thermal Resistance (junction to ground paddle)	397 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C


ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

GaAs MMIC SUB-HARMONIC

SMT MIXER, 21 - 31 GHz

HMC264LC3B

Outline Drawing

- OR LASER MARK LOCATED APPROX. AS SHOWN.
- 6. PACKAGE WARP SHALL NOT EXCEED 0.05MM DATUM C-
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
Alumina, White	Gold over Nickel	MSL3 ^[1]	H264 XXXX

[1] Max peak reflow temperature of 260 °C

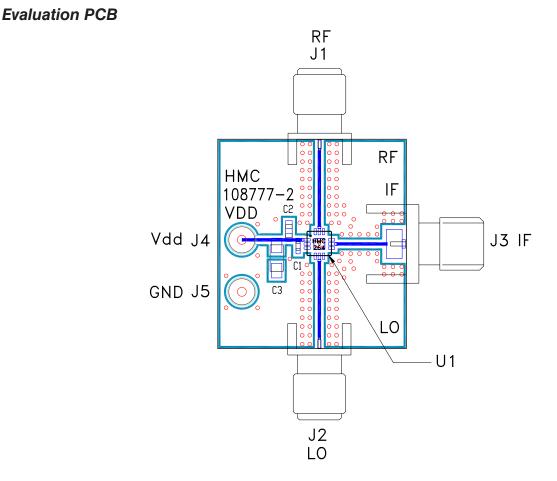
[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

GaAs MMIC SUB-HARMONIC SMT MIXER, 21 - 31 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1	Vdd	Power supply for the LO Amplifier. External RF bypass capacitors are required as close to the package as possible.		
2, 3	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.		
4, 6, 7, 9, 10, 12	GND	Package bottom must also be connected to RF/DC ground.		
5	LO	LO Port. This pin is AC coupled and matched to 50 Ohms from 10.5 - 15.5 GHz.		
8	IF	IF Port. This pin is DC coupled and should be DC blocked exter- nally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. Any applied DC voltage to this pin will result in die non-function and possible die failure.		
11	RF	RF Port. This pin is AC coupled and matched to 50 Ohms from 21 - 31 GHz.		


v04.0414

v04.0414

GaAs MMIC SUB-HARMONIC SMT MIXER, 21 - 31 GHz

List of Materials for Evaluation PCB 108779^[1]

Item	Description
J1 - J3	PCB Mount SMA Connector
J4, J5	DC Pin
C1	100 pF Capacitor, 0402 Pkg.
C2	1000 pF Capacitor, 0603 Pkg
С3	2.2 µF Capacitor, Tantalum
U1	HMC264LC3B Mixer
PCB [2]	108777 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.