
GaAs MMIC I/Q MIXER 24 - 28 GHz

Typical Applications

The HMC1063LP3E is ideal for:

- Point-to-Point and Point-to-Multi-Point Radio
- · Military Radar, EW & ELINT
- Satellite Communications
- Sensors

Functional Diagram

Features

Low LO Power: 10 dBm

Wide IF Bandwidth: DC - 3 GHz

Image Rejection: 21 dBc LO / RF Isolation: 40 dB High Input IP3: 17 dBm

16 Lead 3x3 mm SMT Package: 9 mm²

General Description

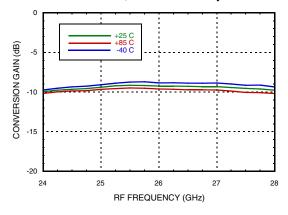
The HMC1063LP3E is a compact I/Q MMIC mixer in a leadless "Pb free" SMT package, which can be used as either an Image Reject Mixer or a Single Sideband Upconverter. The mixer utilizes two standard Hittite double balanced mixer cells and a 90 degree hybrid fabricated in a GaAs Schottky diode process. A low frequency quadrature hybrid was used to produce a 1000 MHz LSB IF output. This product is a much smaller alternative to hybrid style Image Reject Mixers and Single Sideband Upconverter assemblies. The HMC1063LP3E eliminates the need for wire bonding and allows the use of surface mount manufacturing techniques.

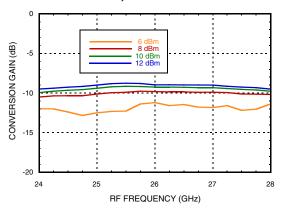
Electrical Specifications $^{[1][2]}$, $T_A = +25$ °C, IF = 1000 MHz, LSB, LO = +10 dBm

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF		24 - 27			27- 28		GHz
Frequency Range, LO	21 - 30		24 - 31		GHz		
Frequency Range, IF		DC - 3			DC - 3		GHz
Conversion Gain	-11.5	-9.5		-11.5	-9.5		dB
Image Rejection	15	21		13	21		dBc
LO to RF Isolation	30	42		28	36		dB
LO to IF Isolation		40			40		dB
IP3 (Input)		18			16		dBm
Amplitude Balance [2]		1			1		dB
Phase Balance ^[2]		-2			+2		Deg

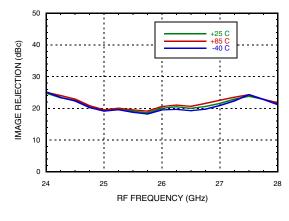
^[1] Unless otherwise noted all measurements performed as downconverter.

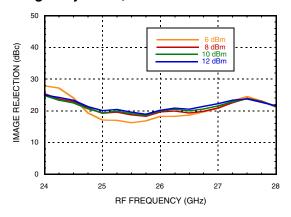
^[2] Data taken without external 90° hybrid.

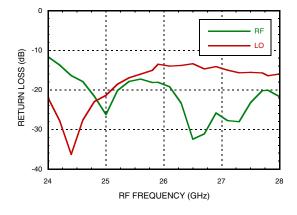


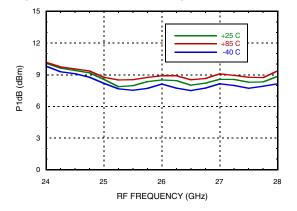

GaAs MMIC I/Q MIXER 24 - 28 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 1000 MHz


Conversion Gain, LSB vs. Temperature


Conversion Gain, LSB vs. LO Drive

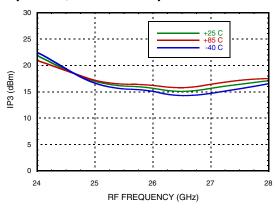

Image Rejection, LSB vs. Temperature

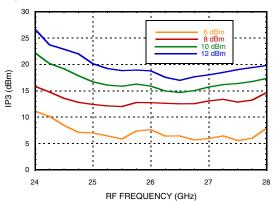

Image Rejection, LSB vs. LO Drive

Return Loss

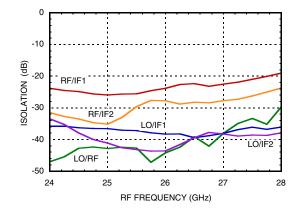
Input P1dB, LSB vs. Temperature

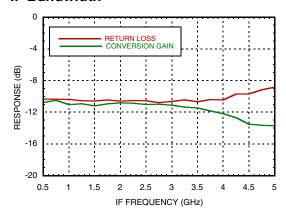
[1] Data taken without external IF 90° hybrid

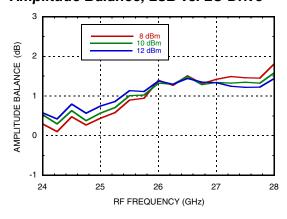


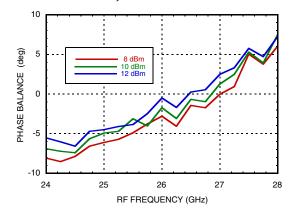

GaAs MMIC I/Q MIXER 24 - 28 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 1000 MHz


Input IP3, LSB vs. Temperature


Input IP3, LSB vs. LO Drive

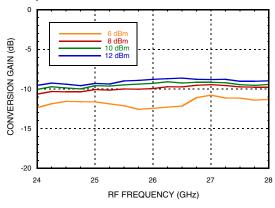

Isolations

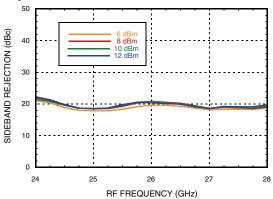

IF Bandwidth*

Amplitude Balance, LSB vs. LO Drive

Phase Balance, LSB vs. LO Drive

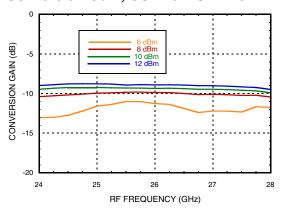
^{*} Conversion gain data taken with external IF hybrid.

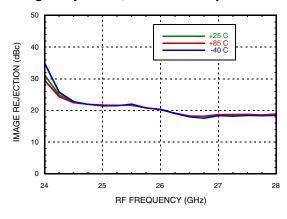



GaAs MMIC I/Q MIXER 24 - 28 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 1000 MHz

Upconverter Performance, Conversion Gain, LSB vs. LO Drive


Upconverter Performance, Sideband Rejection, LSB vs. LO Drive,


Conversion Gain, USB vs. Temperature

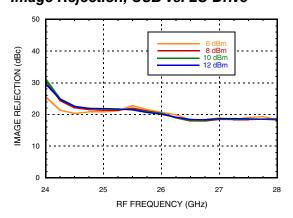
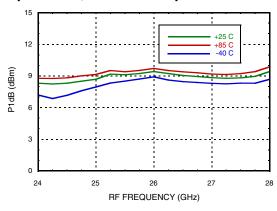
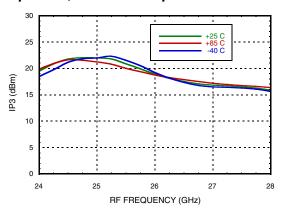

Conversion Gain, USB vs. LO Drive

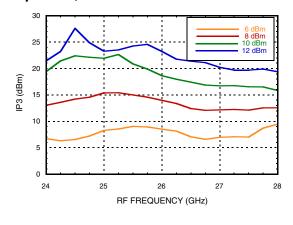
Image Rejection, USB vs. Temperature

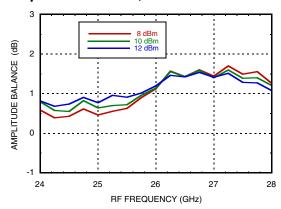
Image Rejection, USB vs. LO Drive

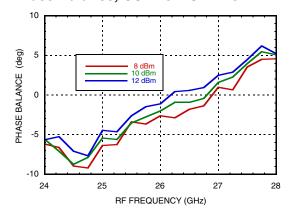



GaAs MMIC I/Q MIXER 24 - 28 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 1000 MHz

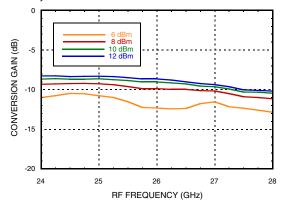

Input P1dB, USB vs. Temperature

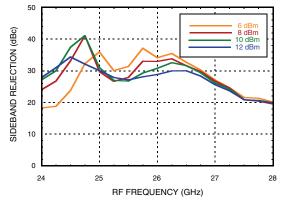

Input IP3, USB vs. Temperature


Input IP3, USB vs. LO Drive

Amplitude Balance, USB vs. LO Drive

Phase Balance, USB vs. LO Drive

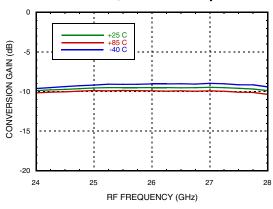


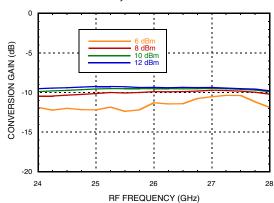

GaAs MMIC I/Q MIXER 24 - 28 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 1000 MHz

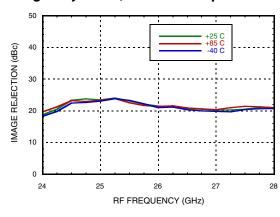
Upconverter Performance, Conversion Gain, USB vs. LO Drive

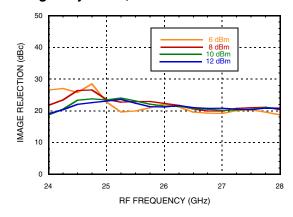
Upconverter Performance, Sideband Rejection, USB vs. LO Drive,

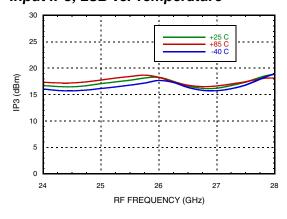


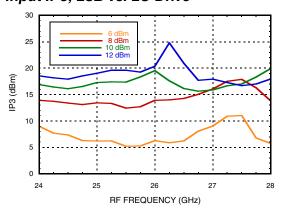

GaAs MMIC I/Q MIXER 24 - 28 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 3000 MHz


Conversion Gain, LSB vs. Temperature

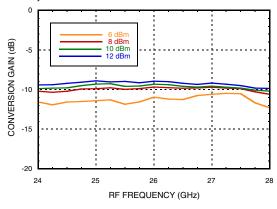

Conversion Gain, LSB vs. LO Drive

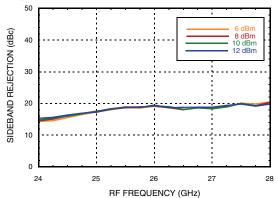

Image Rejection, LSB vs. Temperature


Image Rejection, LSB vs. LO Drive

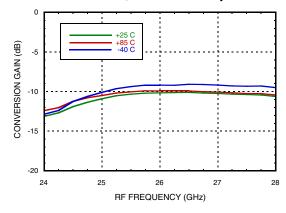
Input IP3, LSB vs. Temperature

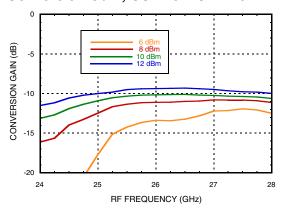
Input IP3, LSB vs. LO Drive

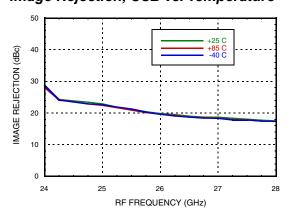



GaAs MMIC I/Q MIXER 24 - 28 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 3000 MHz


Upconverter Performance, Conversion Gain, LSB vs. LO Drive


Upconverter Performance, Sideband Rejection, LSB vs. LO Drive,


Conversion Gain, USB vs. Temperature

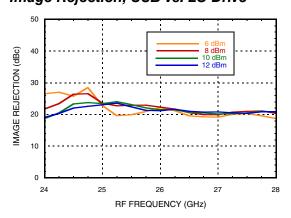
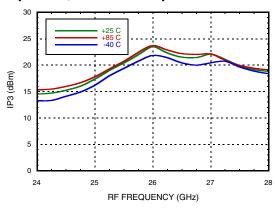
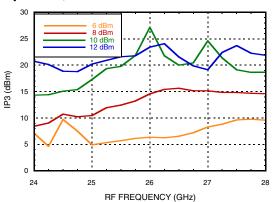

Conversion Gain, USB vs. LO Drive

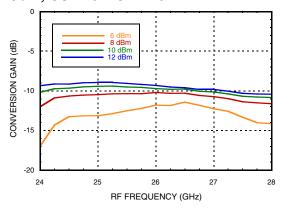
Image Rejection, USB vs. Temperature

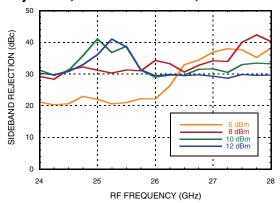
Image Rejection, USB vs. LO Drive




GaAs MMIC I/Q MIXER 24 - 28 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 3000 MHz


Input IP3, USB vs. Temperature


Input IP3, USB vs. LO Drive

Upconverter Performance, Conversion Gain, USB vs. LO Drive

Upconverter Performance, Sideband Rejection, USB vs. LO Drive,

GaAs MMIC I/Q MIXER 24 - 28 GHz

Harmonics of LO

10 5 (011-)	nLO Spur at RF Port			
LO Freq. (GHz)	1	2	3	
23	36.6	43.3	х	
24	33.8	46.4	х	
25	32.1	49.4	х	
26	29.6	х	х	
27	31.8	х	х	
28	32.8	х	х	

LO = + 10 dBm Values in dBc below LO level measured at RF Port.

MxN Spurious Outputs

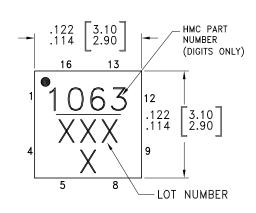
	nLO				
mRF	0	1	2	3	4
0	XX	1	28	x	х
1	8	0	34	60	х
2	95	53	51	58	87
3	х	97	97	97	97
4	х	х	х	97	97

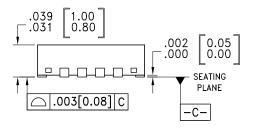
RF = 22 GHz @ -10 dBm

LO = 23 GHz @ +10 dBm

Data taken without IF hybrid

All values in dBc below IF power level


GaAs MMIC I/Q MIXER 24 - 28 GHz


Absolute Maximum Ratings

IF Input (At LO = 10 dBm and RF = -10 dBm)	+11.5 dBm	
RF Input (At 10 dBm LO Power)	+13 dBm	
LO Input (At -10 dBm RF Power)	+14.5 dBm	
Channel Temperature	175 °C	
Continuous Pdiss (T = 85°C) (derate 6 mW/°C above 85°C)	550 mW	
Thermal Resistance (channel to ground paddle)	164 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

Outline Drawing

NOTES:

- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILCON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY.
- 3. LEAD AND GROUND PADDLE PLATING: 100% MATTE TIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 6. PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.05mm MAX.
- 7. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

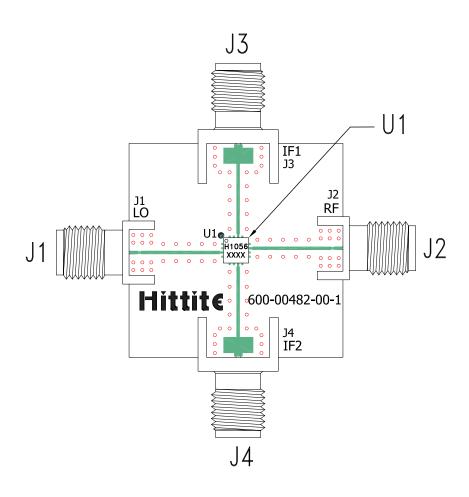
Part Number	Package Body Material	Lead Finish	MSL Rating [2]	Package Marking [1]
HMC1063LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1	<u>H1063</u> XXXX

^{[1] 4-}Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

GaAs MMIC I/Q MIXER 24 - 28 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 5, 6, 8, 9, 12, 13, 15, 16	N/C	These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
2, 4, 10	GND	These pins and exposed ground paddle must be connected to RF/DC ground	○ GND =
3	LO	This pin is DC coupled and matched to 50 Ohns	0
7	IF2	Differential IF input pins. For applications not requiring operation to DC, an off chip DC blocking capacitor should be used. For operation to DC this pin must not source/sink	IF1,IF2
14	IF1	more than 3 mA of currrent or part non function and and possible part failure will result.	
11	RFOUT	This pin is DC coupled and matched to 50 Ohms.	RF O

GaAs MMIC I/Q MIXER 24 - 28 GHz

Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC1063LP3 [1]

Item	Description
J1, J2	PCB mount K Connector SRI
J3, J4	PCB mount SMA Connector Johnson
U1	HMC1063LP3E Downconverter
PCB [2]	600-00482-00-1 Evaluation Board

[1] Reference this number when ordering complete evaluation PCB $\,$

[2] Circuit Board Material: Arlon 25FR, FR4 or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.