

ZL30661, ZL30662, ZL30663 1-, 2-, 3-Channel, 10-Input, 18-Output Line Card Timing ICs

Product Brief

August 2019

Features

One, Two or Three DPLL Channels

- Programmable bandwidth, 14Hz to 470Hz
- · Freerun or holdover on loss of all inputs
- Hitless reference switching
- · High-resolution holdover averaging
- Per-DPLL phase adjustment, 1ps resolution
- Programmable tracking range, phase-slope limiting, frequency-change limiting and other advanced features

Input Clocks

- Accepts up to 10 differential or CMOS inputs
- Any input frequency from 1kHz to 900MHz
- Per-input activity and frequency monitoring
- · Automatic or manual reference switching
- Revertive or nonrevertive switching
- Any input can be a 1PPS SYNC input for REF+SYNC frequency/phase/time locking
- Any input can be a clock with embedded 1PPS
- Input-input phase measurement, 1ps resolution
- Input-DPLL phase measurement, 1ps resolution
- Per-input phase adjustment, 1ps resolution

Output Clock Frequency Generation

- Any output frequency from <1Hz to 1045MHz (180MHz max for Synth0)
- High-resolution fractional frequency conversion with 0ppm error
- Synthesizers 1 & 2 have integer and fractional dividers to make a total of 5 frequency families
- Output jitter from Synth 1 & 2 is <0.3ps RMS
- Output jitter from fractional dividers is typically
 1ps RMS, many frequencies <0.5ps RMS
- Each HPOUTP/N pair can be LVDS, LVPECL, HCSL, 2xCMOS, HSTL or programmable diff.
- In 2xCMOS mode, the P and N pins can be different frequencies (e.g. 125MHz and 25MHz)
- Four output banks each with VDDO pin; CMOS output voltages from 1.5V to 3.3V
- · Per-synthesizer phase adjust, 1ps resolution

Ordering Information

ZL30661LFG7 1-Channel 80-lead LGA Trays ZL30662LFG7 2-Channel 80-lead LGA Trays ZL30663LFG7 3-Channel 80-lead LGA Trays

> NiAu (Pb-free) Package size: 11 x 11 mm

-40°C to +85°C

- Per-output programmable duty cycle
- Precise output alignment circuitry and peroutput phase adjustment
- Per-output enable/disable and glitchless start/stop (stop high or low)

Local Oscillator

- Operates from a single low-cost XO: 23.75-25MHz, 47.5-50MHz, 114.285-125MHz
- High-stability applications can connect a TCXO or OCXO (any frequency, any output jitter) to the OSCI pin to provide a stability reference

General Features

- Automatic self-configuration at power-up from internal Flash memory
- Input-to-output alignment <200ps (ext feedback)
- Fast REF+SYNC locking for frequency and 1PPS phase alignment with lower-cost oscillator
- Internal compensation (1ppt) for local oscillator frequency error in DPLLs and input monitors
- Numerically controlled oscillator behavior in each DPLL and each fractional output divider
- Easy-to-configure design requires no external VCXO or loop filter components
- 7 GPIO pins with many possible behaviors
- SPI or I²C processor Interface
- 1.8V and 3.3V core VDD voltages
- Power: 1.3W for 2 inputs, 1 synth, 6 LVDS out
- Easy-to-use evaluation/programming software

Applications

 Line card timing IC for SyncE, SyncE+1588, SONET/SDH, OTN, wireless base station and other systems carrier-grade system

1. Block Diagram

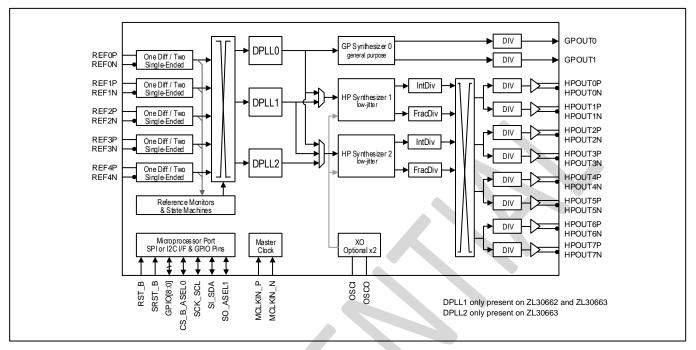


Figure 1 - Functional Block Diagram

2. Application Example

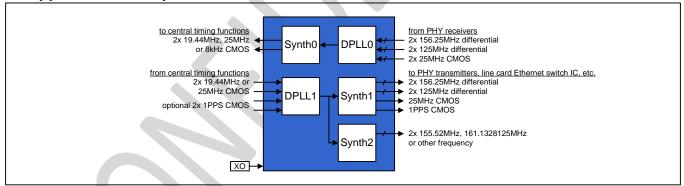


Figure 2 - Synchronous Ethernet and IEEE 1588 Line Card Application

3. Detailed Features

3.1 Input Block Features

- Ten input reference pins; each can accept a CMOS signal or the POS side of a differential pair; or two
 can be paired to accept both sides of a differential pair
- Any input can be a SYNC signal for REF+SYNC frequency/phase/time locking
- Any input can be a clock signal with embedded PPS signal (duty cycle distortion indicates PPS location)
- Input clocks can be any frequency from 1kHz up to 900MHz (180MHz max for CMOS inputs)
- Supported telecom frequencies include PDH, SDH, Synchronous Ethernet, OTN, wireless
- Inputs constantly monitored by programmable frequency and single-cycle monitors
- Single-cycle monitor can quickly disqualify a reference when measured period is incorrect
- Frequency measurement (ppb or Hz) and monitoring (coarse, fine, and frequency-step monitors)
- Optional input clock invalidation on GPIO assertion to react to LOS signals from PHYs
- Input-to-input phase measurement, 1ps resolution
- Input-to-DPLL phase measurement, 1ps resolution
- Per-input phase adjustment, 1ps resolution

3.2 DPLL Features

- One, two or three full-featured DPLLs
- Very high-resolution DPLL architecture
- · State machine automatically transitions among freerun, tracking and holdover states
- Revertive or nonrevertive reference selection algorithm
- Programmable bandwidth from 14Hz to 470Hz
- Less than 0.1dB gain peaking
- Fast frequency/phase/time lock capability for clock+1PPS input references
- Programmable phase-slope limiting (PSL)
- Programmable frequency rate-of-change limiting (FCL)
- Programmable tracking range (i.e. hold-in range)
- Truly hitless reference switching
- Per-DPLL phase adjustment, 1ps resolution
- High-resolution frequency and phase measurement
- Fast detection of input clock failure and transition to holdover mode
- High-resolution holdover frequency averaging
- Time-of-Day registers: 48-bit seconds, 32-bit nanoseconds, writeable on input PPS edge

3.3 Synthesizer Features

- Any-to-any frequency conversion with 0ppm error
- Two low-jitter synthesizers (Synth1, Synth2) with very high-resolution fractional scaling (i.e. non-integer multiplication)
- Two output dividers per low-jitter synthesizer: one integer (4 to 15 plus half divides 4.5 to 7.5) and one 40-bit fractional
- One general-purpose synthesizer (Synth0)
- A total of five output frequency families
- Easy-to-configure, completely encapsulated design requires no external VCXO or loop filter components

3.4 Low-Jitter Output Clock Features

- Up to 16 single-ended outputs (up to 8 differential outputs) from Synth1 and Synth2
- Each output can be one differential output or two CMOS outputs
- Output clocks can be any frequency from 1Hz to 1045MHz (250MHz max for CMOS and HSTL outputs)
- Output jitter from Synth1 and Synth2 integer dividers is <0.3ps RMS
- Output jitter from fractional dividers is <1ps RMS, many frequencies <0.5ps RMS
- In CMOS mode, the HPOUTxN frequency can be an integer divisor of the HPOUTxP frequency (Example 1: HPOUT3P 125MHz, HPOUT3N 25MHz. Example 2: HPOUT2P 25MHz, HPOUT2N 1Hz)

- Outputs directly interface (DC coupled) with LVDS, LVPECL, HSTL, HCSL and CMOS components
- Supported telecom frequencies include PDH, SDH, Synchronous Ethernet, OTN
- Can produce clock frequencies for microprocessors, ASICs, FPGAs and other components
- Can produce PCIe clocks
- Sophisticated output-to-output phase alignment
- Per-synthesizer phase adjustment, 1ps resolution
- Per-output phase adjustment
- Per-output duty cycle / pulse width configuration
- Per-output enable/disable
- Per-output glitchless start/stop (stop high or low)

3.5 General-Purpose Output Clock Features

- Two CMOS outputs from Synth0
- Any frequency from 1Hz to 180MHz
- Output jitter is typically 20-30ps
- Useful for applications where the component or system receiving the signal has low bandwidth such as a central timing IC
- Can output a clock signal with embedded PPS (ePPS) (duty cycle distortion indicates PPS location)

3.6 Local Oscillator

- Operates from a single low-cost XO (jitter reference for the device). Acceptable frequencies: 23.75MHz to 25MHz, 47.5MHz to 50MHz, 114.285MHz to 125MHz. Best jitter: ≥48MHz.
- High stability applications can connect a TCXO or OCXO (any frequency, any output jitter) to a REF pin
 to provide a separate stability reference
- This ability to have separate jitter and stability references greatly reduces the cost of the TCXO or OCXO (no jitter requirement, no high-frequency-requirement) and allows reuse of already-qualified TCXO and OCXO components

3.7 General Features

- Automatic self-configuration at power-up from internal Flash memory
- Input-to-output alignment <200ps with external feedback
- Fast REF+SYNC locking for frequency and 1PPS phase alignment with lower-cost oscillator
- Generates output SYNC signals: 1PPS (IEEE 1588), 2kHz or 8kHz (SONET/SDH) or other frequency
- JESD204B clocking: device clock and SYSREF signal generation with skew adjustment
- Internal compensation for local oscillator frequency error in DPLLs and input monitors, 1ppt resolution
- Numerically controlled oscillator (NCO) behavior allows system software to steer DPLL frequency or fractional output divider frequency with resolution better than 0.005ppt
- Spread-spectrum modulation available in each fractional output divider (PCIe compliant)
- Seven general-purpose I/O pins each with many possible status and control options
- SPI or I²C serial microprocessor interface

3.8 Evaluation Software

- Simple, intuitive Windows-based graphical user interface
- Supports all device features and register fields
- Makes lab evaluation of the device guick and easy
- Generates configuration scripts to be stored in internal Flash memory
- Generates full or partial configuration scripts to be run on a system processor
- Works with or without an evaluation board