

Description

The ZXGD3109N8 is intended to drive a MOSFET configured as an ideal diode replacement. The device is comprised of a high-voltage detector stage and gate driver. The detector monitors the voltage between the drain and the source of the MOSFET, and if this voltage is less than the turn-on threshold voltage of the controller, a positive voltage is applied to the MOSFET's Gate Pin. As the load current decays to zero, and the voltage between the drain and source of the MOSFET increases beyond the turn-off threshold value, the MOSFET is rapidly turned off.

Intelligent features of this IC are the Minimum Off-Time (T_{OFF}) and Minimum On-Time (T_{ON}). These features blanket the noise generated during the turn-on and turn-off instances of the power FET. Also Light Load Detection (LLD) for improved efficiency at light and no load, where synchronous rectification is no more beneficial. Other features include, Undervoltage Lockout (UVLO) and low turn-off threshold voltage for improved efficiency.

SYNCHRONOUS MOSFET CONTROLLER IN SO-8

Features

- Frequency of Operation Up to 500kHz
- Suitable for Discontinuous Conduction Mode (DCM) and Critical Conduction Mode (CrCM)
- Minimum On-Time and Off-Time to Reduce Turn-On/Off Oscillations
- Intelligent Light Load Detection and Sleep Mode
- Turn-Off Propagation Delay Time of 30ns Typically
- Drain Voltage Rating of 200V
- Recommended Operating Voltage from 4.5V up to 12V
- Source and Sink Current of 2A and 4A Respectively
- Low Component Count
- Totally Lead-Free & Fully RoHS compliant (Notes 1 & 2)
- Halogen and Antimony free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative.

https://www.diodes.com/guality/product-definitions/

Mechanical Data Applications Flyback Converters in: Case: SO-8 Case Material: Molded Plastic. "Green" Molding Compound. **Power Adaptors** Auxiliary Power Supplies UL Flammability Classification Rating 94V-0 **PoE Power Devices** Moisture Sensitivity: Level 1 per J-STD-020 Terminals: Finish – Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (e3) Resonant Converters in: High Power Adaptors Weight: 0.074 grams (Approximate) 85+/90+ Compliant ATX and Server Power Supplies **Typical Configuration** Transformer ž ξ TON T \bigcirc 💷 Vcc VCC ZXGD3109 T_{OFF/EN} TOFF/F vn Vs 🗆 GATE PGATE GND GATE Va CPG D PGATE VD Top View SO-8 Synchronous Rectifie MOSFET Pin-Out Top view Ordering Information (Note 4)

Product	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
ZXGD3109N8TC	ZXGD3109	13	12	2,500

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

Pin Descriptions

Pin Number	Pin Name	Function	
1	Ton	Minimum On-Time Minimum on-time setting pin. Connect this pin to Ground via R _{TON} resistor.	
2	Toff/en	Minimum Off-Time/Enable Pin This pin combines the functions of setting the programmable minimum off-time as well as acting as the Enable Pin. The device enters Undervoltage Lockout (UVLO) mode when Vcc falls below the UVLO threshold. At this point, the ToFF/EN Pin is internally shorted to Ground through a resistor. The internal current source (used for setting ToFF) is powered down. Once the UVLO threshold is exceeded, the internal resistor is removed and the current source is activated. If the voltage applied to the ToFF/EN Pin exceeds the VEN-ON threshold then the device is in Active Mode. If the voltage drops below the VEN-OFF threshold then the device is in Sleep Mode.	
3	Vs	Source Voltage Connect this pin to the source of the synchronous MOSFET	
4	VD	Drain Voltage The pin needs to be connected as closely as possible to the transformer used in the application to minimiz the effects of parasitic inductance on the performance of the device. The device requires that V_D has a roltage greater than 1.5V, and that the TOFF timer has expired before the MOSFET is able to be activated. Once these conditions are met, and the voltage sensed on the V_D Pin is 150mV lower than the Vs Pin, the Bate output to the synchronous MOSFET will go high and the ToN (minimum on-time) period is started. The MOSFET will remain on for at least the length of the minimum on-time. After the ToN period, the MOSFET will remain on until the V _D to Vs voltage has reached the VTHOFF threshold, at which point the Gate output to low. If the V _{THOFF} threshold is reached before the T _{ON} period has expired, the device will enter the Ligh coad Mode. Under this mode, the MOSFET will not be turned on the next switching cycle. The device will come out of light load once the on-time of the synchronous MOSFET exceeds the set minimum on-time.	
5	PGATE	Protection MOSFET Gate A 100nF capacitor should be connected between this pin and GND.	
6	GATE	Gate Connect GATE to the gate of the synchronous MOSFET through a small-series resistor using short PC board tracks to achieve optimal switching performance. The Gate output can source >2A peak source current while turning on the sync MOSFET, and can sink >4A peak current while turning on the sync MOSFET.	
7	GND	Ground This is the reference potential for all internal comparators and thresholds. A 10µF decoupling capacitor is required to be placed as close as possible between Vcc and GND Pins.	
8	Vcc	Power Supply Pin Vcc supplies all the internal circuitry of the device. A DC supply is required to be connected to this pin. A 10μ F or larger capacitor must be connected between this pin and GND Pin as close as possible. The device will not function until the Vcc has risen above the UVLO threshold. The device can safely be turned off by bringing Vcc below the UVLO threshold (minus the UVLO threshold hysteresis). If Vcc drops below the UVLO threshold (minus UVLO threshold hysteresis). If Vcc drops below the UVLO threshold (minus UVLO threshold hysteresis), the MOSFET is turned off and the TOFF/EN Pin is internally connected to GND.	

Absolute Maximum Ratings (@TA = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Supply Voltage, Relative to GND	Vcc	-0.3 to 15	V
Drain Pin Voltage	VD	-1 to +200	V
Gate Output Voltage	VG	12	V
Minimum On-Time (TOFF) Pin Voltage	VTOFF	-0.3 to 6	V
Minimum Off-Time (T _{ON}) Pin Voltage	V _{TON}	-0.3 to 6	V
Gate Driver Peak Source Current	ISOURCE	5	А
Gate Driver Peak Sink Current	Isink	5	А
Input Voltage Range Vs	Vs	-1 to 1	V

Thermal Characteristics

Characteristic	Symbol	Value	Unit		
	(Note 5)		490 3.92		
Power Dissipation	(Note 6)	Pa	655 5.24	mW mW/°C	
Linear Derating Factor	(Note 7)	FD	720 5.76		
	(Note 8)		785 6.28		
	(Note 5)		255		
Thermal Registerion Junction to Ambient	(Note 6)	Devi	191	°C/W	
mermai Resistance, Junction to Ambient	(Note 7)	Reja	173		
	(Note 8)		159	1	
Thermal Resistance, Junction to Lead (Note 9)		R _{θJL}	55	°C/W	
Thermal Resistance, Junction to Case (Note 10)		Rejc	45	°C/W	
Maximum Jundtion Temperature		TJ	+150	°C	
Storage Temperature Range		T _{STG}	-65 to +150	C	

ESD Ratings (Note 11)

Characteristic	Symbol	Value	Unit	JEDEC Class
Electrostatic Discharge - Human Body Model	ESD HBM	2,000	V	1C
Electrostatic Discharge - Machine Model	ESD MM	500	V	С

5. For a device surface mounted on minimum recommended pad layout FR4 PCB with high coverage of single sided 1oz copper, in still air conditions; the Notes: device is measured when operating in a steady-state condition.6. Same as Note (5), except Pin 8 (VCC) and Pin 7 (GND) are both connected to separate 5mm x 5mm 1oz copper heatsinks.

Same as Note (6), except both heatsinks are 10mm x 10mm.
Same as Note (6), except both heatsinks are 15mm x 15mm.

9. Thermal resistance from junction to solder-point at the end of each lead on Pin 8 (V_{CC}) and Pin 7 (GND).

10. Thermal resistance from junction to top of the case. 11. Refer to JEDEC specification JESD22-A114 and JESD22-A115.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
Vcc	Supply Voltage Range	4.5	12	
V _{DS}	Voltage Cross Drain and Source	-1	200	v
Fsw	Switching Frequency	20	600	kHz
TJ	Operating Junction Temperature Range	-40	+125	°C
RTOFF	TOFF Resistor Value	85	200	kΩ
RTON	T _{ON} Resistor Value	8.25	100	kΩ
Cvcc	Vcc Bypass Capacitor	10	_	μF

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ICC _{START}	Supply Current (Undervoltage)	$V_{CC} = 2.6V$	_	160	220	
1000000000000	Supply Current (Dischlad)	$V_{CC} = 5.5V, R_{EN/OFF} = 0\Omega$	_	380	500	μA
		$V_{CC} = 12V, R_{EN/OFF} = 0\Omega$	_	450	600	
		$V_{CC} = 5.5V, F_{SW} = 100KHz$ $C_{GATE} = 0pF$	_	1.5	1.8	
100-00	Current (Enchlod)	V _{CC} = 12V, F _{SW} = 100KHz C _{GATE} = 0pF	-	1.8	2.3	
ICCON	Supply Current (Enabled)	Vcc = 5.5V, Fsw = 100KHz Cgate = 3,300pF	-	3.2	4	. ma
		Vcc = 12V, Fsw = 100KHz Cgate = 3,300pF	_	5	7	
V _{EN-ON}	T _{OFF/EN} Turn-on Threshold, Rising	T _{OFF/EN} Driven, V _{TON} > 0.6V	1.31	1.4	1.49	
Ven-off	TOFF/EN Turn-off Threshold, Falling	Toff/en Driven, Vton > 0.2V	0.55	0.6	0.65	V
IEN-START	TOFF/EN Input Current (Disabled)	Rtoff = 50kΩ	-23	-20	-17	
IEN-ON	TOFF/EN Input Current (Enabled)	Rtoff = 100kΩ	-11.5	-10	-8.5	μΛ
Undervoltage Loo	ckout (UVLO)					
UVLOTH	Vcc Undervoltage Lockout Threshold Rising		2.8	3.0	3.20	V
UVLOHYS	Vcc Undervoltage Lockout Threshold Hysteresis	_	_	200	—	mV
MOSFET Voltage	Sensing					
VTHARM	Gate Re-Arming Threshold	V _D to GND, Rising	-1.3	1.5	-1.7	V
VTHON	Gate Turn-On Threshold	(V _D -V _S) Falling, V _S = 0V	-220	-150	-80	mV
Vthofflv	Gate Turn-Off Threshold	(V _D -V _S) Rising, V _S = 0V, V _{CC} < 4.3V	-30	-20	-10	mV
Vthoffhv	Gate Turn-Off Threshold	(V_D-V_S) Rising, $V_S = 0V$, $V_{CC} > 4.3V$	-10	-4	-1	mV
TD(ON)	Gate Turn-On Propagation Delay	From VTHON to Gate > 1V	_	30	52	ns
TD(OFF)	Gate Turn-Off Propagation Delay	From VTHOFF to Gate < 4V		30	62	ns
Minimum On-Tim	ie					
Ton-lr	Minimum On-Time Low Resistance	$R_{TON} = 8.25 k\Omega$	0.26	0.34	0.42	μs
Ton-hr	Minimum On-Time High Resistance	R _{TON} = 100kΩ	2.2	3	3.8	μs

Electrical Characteristics (Continued) (@T_A = +25°C, unless otherwise specified.)

Minimum Off-Ti	ime					
Toff-lr	Minimum Off-Time Low Resistance	Rtoff = 100kΩ	1.2	3	5	μs
Toff-hr	Minimum Off-Time High Resistance	Rtoff = 200kΩ	15	21	25	μs
T _{OFF-LV}	Minimum Off-Time Low Voltage	V _{EN/TOFF} = 1V	—	3	—	μs
Toff-hv	Minimum Off-Time High Voltage	VEN/TOFF = 2V	—	21	—	μs
T _{OFF-OV}	Minimum Off-Time Over Voltage	2V < V _{EN/TOFF} < V _{AVDD}	-	21	_	μs
Gate Driver	·					
Rgup	Gate Pull-Up Resistance Enabled	Igate = -100mA		2.3	-	
R _{GDN}	Gate Pull-Down Resistance Enabled	I _{GATE} = 100mA	—	1.1		Ω
ISOURCE	Peak Gate Source Current	CGATE = 22nF	-	3	-	•
Isink	Peak Gate Sink Current	CGATE = 22nF	_	4	_	A
Maria	Gate Output High Voltage	$V_{CC} = 5V$	4.7	-	—	
VOHG		Vcc = 12V	9	_	_	V
Volg	Gate Output Low Voltage	$V_{CC} = 5V$	_	—	0.3	
T	Cate Fall Time	4V to 1V, C _{GATE} = 3,300pF, V _{CC} = 5V	-	14	42	
IFGATE		9V to 1V, CGATE = 3,300pF, VCC = 12V	_	20	42	
		1V to 4V, $C_{GATE} = 3,300$ pF, V _{CC} = 5V	_	16	42	ns
I RGATE	Gate Rise Time	1V to 10V, C _{GATE} = 3,300pF, V _{CC} = 12V	_	20	42	
T _{DIS}	Disable Delay (Note 8)	EN Falling to Gate Falling	—	160	_	
Exception Handling						
T _{OVER}	Overtemperature	—	—	+150	—	°C
TRECOVER	Temperature to Recover from Overtemperature Exception	_	_	+125	_	°C

Typical Application Circuit

Less than 12V rails can be directly connected to the Vcc. For more than 12V operation, a regulator arrangement is suggested in the figure.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Performance Characteristics (Cont.)

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)		
С	1.27		
Х	0.802		
X1	4.612		
Y	1.505		
Y1	6.50		